Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling
Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this...
Gespeichert in:
Veröffentlicht in: | Healthcare (Basel) 2022-11, Vol.10 (12), p.2367 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2367 |
container_title | Healthcare (Basel) |
container_volume | 10 |
creator | Pathan, Refat Khan Alam, Fahim Irfan Yasmin, Suraiya Hamd, Zuhal Y Aljuaid, Hanan Khandaker, Mayeen Uddin Lau, Sian Lun |
description | Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this study, artificial intelligence was used to rapidly detect breast cancer by analyzing ultrasound images from the Breast Ultrasound Images Dataset (BUSI), which consists of three categories: Benign, Malignant, and Normal. The relevant dataset comprises grayscale and masked ultrasound images of diagnosed patients. Validation tests were accomplished for quantitative outcomes utilizing the exhibition measures for each procedure. The proposed framework is discovered to be effective, substantiating outcomes with only raw image evaluation giving a 78.97% test accuracy and masked image evaluation giving 81.02% test precision, which could decrease human errors in the determination cycle. Additionally, our described framework accomplishes higher accuracy after using multi-headed CNN with two processed datasets based on masked and original images, where the accuracy hopped up to 92.31% (±2) with a Mean Squared Error (MSE) loss of 0.05. This work primarily contributes to identifying the usefulness of multi-headed CNN when working with two different types of data inputs. Finally, a web interface has been made to make this model usable for non-technical personals. |
doi_str_mv | 10.3390/healthcare10122367 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744639180</galeid><sourcerecordid>A744639180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-f520b949ffbb3e13f99a9c9eb6441b4c2844aca9fe7bf0930616dae99b5c8423</originalsourceid><addsrcrecordid>eNptUk1v1DAQtRCIVkv_AAcUiQuXFH8lzlyQSlQoUguXInGzHGe86-KNi50U9d_jbUtpAfswI_u9N-PnIeQlo4dCAH27QRPmjTUJGWWci1Y9Ifucc1UDFfzpg3yPHOR8QcsCJjrRPCd7om0a0QHbJ9_eJzR5rnozWUxVH0zO3nlrZh-nariuvmY_rauzJcy-PkEz4lj1cbqKYdkhTKg-45Juwvwzpu_VWRwxFMoL8syZkPHgLq7I-Yfj8_6kPv3y8VN_dFpbCWquXcPpABKcGwaBTDgAAxZwaKVkg7S8k9JYAw7V4CgI2rJ2NAgwNLaTXKzIu1vZy2XY4mhxmks3-jL5rUnXOhqvH99MfqPX8UqDUgqKPSvy5k4gxR8L5llvfbYYgpkwLllz1XSMNbRTBfr6L-hFXFLx4AbVtlD6k39QaxNQ-8nFUtfuRPWRkrIVwLpd2cP_oMoecettnND5cv6IwG8JNsWcE7r7NzKqdxOh_52IQnr10J17yu__F78AjvCz2g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756690934</pqid></control><display><type>article</type><title>Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Pathan, Refat Khan ; Alam, Fahim Irfan ; Yasmin, Suraiya ; Hamd, Zuhal Y ; Aljuaid, Hanan ; Khandaker, Mayeen Uddin ; Lau, Sian Lun</creator><creatorcontrib>Pathan, Refat Khan ; Alam, Fahim Irfan ; Yasmin, Suraiya ; Hamd, Zuhal Y ; Aljuaid, Hanan ; Khandaker, Mayeen Uddin ; Lau, Sian Lun</creatorcontrib><description>Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this study, artificial intelligence was used to rapidly detect breast cancer by analyzing ultrasound images from the Breast Ultrasound Images Dataset (BUSI), which consists of three categories: Benign, Malignant, and Normal. The relevant dataset comprises grayscale and masked ultrasound images of diagnosed patients. Validation tests were accomplished for quantitative outcomes utilizing the exhibition measures for each procedure. The proposed framework is discovered to be effective, substantiating outcomes with only raw image evaluation giving a 78.97% test accuracy and masked image evaluation giving 81.02% test precision, which could decrease human errors in the determination cycle. Additionally, our described framework accomplishes higher accuracy after using multi-headed CNN with two processed datasets based on masked and original images, where the accuracy hopped up to 92.31% (±2) with a Mean Squared Error (MSE) loss of 0.05. This work primarily contributes to identifying the usefulness of multi-headed CNN when working with two different types of data inputs. Finally, a web interface has been made to make this model usable for non-technical personals.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare10122367</identifier><identifier>PMID: 36553891</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; Breast cancer ; Care and treatment ; Classification ; Datasets ; Deep learning ; Diagnosis ; Discriminant analysis ; Health aspects ; Machine learning ; Mammography ; Neural networks ; Skin cancer ; Support vector machines ; Ultrasonic imaging ; Womens health</subject><ispartof>Healthcare (Basel), 2022-11, Vol.10 (12), p.2367</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-f520b949ffbb3e13f99a9c9eb6441b4c2844aca9fe7bf0930616dae99b5c8423</citedby><cites>FETCH-LOGICAL-c497t-f520b949ffbb3e13f99a9c9eb6441b4c2844aca9fe7bf0930616dae99b5c8423</cites><orcidid>0000-0003-3728-4927 ; 0000-0003-2895-2284 ; 0000-0001-6042-0283 ; 0000-0002-7709-7774 ; 0000-0002-3773-0950 ; 0000-0003-3772-294X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36553891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pathan, Refat Khan</creatorcontrib><creatorcontrib>Alam, Fahim Irfan</creatorcontrib><creatorcontrib>Yasmin, Suraiya</creatorcontrib><creatorcontrib>Hamd, Zuhal Y</creatorcontrib><creatorcontrib>Aljuaid, Hanan</creatorcontrib><creatorcontrib>Khandaker, Mayeen Uddin</creatorcontrib><creatorcontrib>Lau, Sian Lun</creatorcontrib><title>Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling</title><title>Healthcare (Basel)</title><addtitle>Healthcare (Basel)</addtitle><description>Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this study, artificial intelligence was used to rapidly detect breast cancer by analyzing ultrasound images from the Breast Ultrasound Images Dataset (BUSI), which consists of three categories: Benign, Malignant, and Normal. The relevant dataset comprises grayscale and masked ultrasound images of diagnosed patients. Validation tests were accomplished for quantitative outcomes utilizing the exhibition measures for each procedure. The proposed framework is discovered to be effective, substantiating outcomes with only raw image evaluation giving a 78.97% test accuracy and masked image evaluation giving 81.02% test precision, which could decrease human errors in the determination cycle. Additionally, our described framework accomplishes higher accuracy after using multi-headed CNN with two processed datasets based on masked and original images, where the accuracy hopped up to 92.31% (±2) with a Mean Squared Error (MSE) loss of 0.05. This work primarily contributes to identifying the usefulness of multi-headed CNN when working with two different types of data inputs. Finally, a web interface has been made to make this model usable for non-technical personals.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Breast cancer</subject><subject>Care and treatment</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Health aspects</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Neural networks</subject><subject>Skin cancer</subject><subject>Support vector machines</subject><subject>Ultrasonic imaging</subject><subject>Womens health</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUk1v1DAQtRCIVkv_AAcUiQuXFH8lzlyQSlQoUguXInGzHGe86-KNi50U9d_jbUtpAfswI_u9N-PnIeQlo4dCAH27QRPmjTUJGWWci1Y9Ifucc1UDFfzpg3yPHOR8QcsCJjrRPCd7om0a0QHbJ9_eJzR5rnozWUxVH0zO3nlrZh-nariuvmY_rauzJcy-PkEz4lj1cbqKYdkhTKg-45Juwvwzpu_VWRwxFMoL8syZkPHgLq7I-Yfj8_6kPv3y8VN_dFpbCWquXcPpABKcGwaBTDgAAxZwaKVkg7S8k9JYAw7V4CgI2rJ2NAgwNLaTXKzIu1vZy2XY4mhxmks3-jL5rUnXOhqvH99MfqPX8UqDUgqKPSvy5k4gxR8L5llvfbYYgpkwLllz1XSMNbRTBfr6L-hFXFLx4AbVtlD6k39QaxNQ-8nFUtfuRPWRkrIVwLpd2cP_oMoecettnND5cv6IwG8JNsWcE7r7NzKqdxOh_52IQnr10J17yu__F78AjvCz2g</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Pathan, Refat Khan</creator><creator>Alam, Fahim Irfan</creator><creator>Yasmin, Suraiya</creator><creator>Hamd, Zuhal Y</creator><creator>Aljuaid, Hanan</creator><creator>Khandaker, Mayeen Uddin</creator><creator>Lau, Sian Lun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3728-4927</orcidid><orcidid>https://orcid.org/0000-0003-2895-2284</orcidid><orcidid>https://orcid.org/0000-0001-6042-0283</orcidid><orcidid>https://orcid.org/0000-0002-7709-7774</orcidid><orcidid>https://orcid.org/0000-0002-3773-0950</orcidid><orcidid>https://orcid.org/0000-0003-3772-294X</orcidid></search><sort><creationdate>20221125</creationdate><title>Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling</title><author>Pathan, Refat Khan ; Alam, Fahim Irfan ; Yasmin, Suraiya ; Hamd, Zuhal Y ; Aljuaid, Hanan ; Khandaker, Mayeen Uddin ; Lau, Sian Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-f520b949ffbb3e13f99a9c9eb6441b4c2844aca9fe7bf0930616dae99b5c8423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Breast cancer</topic><topic>Care and treatment</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Health aspects</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Neural networks</topic><topic>Skin cancer</topic><topic>Support vector machines</topic><topic>Ultrasonic imaging</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pathan, Refat Khan</creatorcontrib><creatorcontrib>Alam, Fahim Irfan</creatorcontrib><creatorcontrib>Yasmin, Suraiya</creatorcontrib><creatorcontrib>Hamd, Zuhal Y</creatorcontrib><creatorcontrib>Aljuaid, Hanan</creatorcontrib><creatorcontrib>Khandaker, Mayeen Uddin</creatorcontrib><creatorcontrib>Lau, Sian Lun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pathan, Refat Khan</au><au>Alam, Fahim Irfan</au><au>Yasmin, Suraiya</au><au>Hamd, Zuhal Y</au><au>Aljuaid, Hanan</au><au>Khandaker, Mayeen Uddin</au><au>Lau, Sian Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling</atitle><jtitle>Healthcare (Basel)</jtitle><addtitle>Healthcare (Basel)</addtitle><date>2022-11-25</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>2367</spage><pages>2367-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>Breast cancer is one of the most widely recognized diseases after skin cancer. Though it can occur in all kinds of people, it is undeniably more common in women. Several analytical techniques, such as Breast MRI, X-ray, Thermography, Mammograms, Ultrasound, etc., are utilized to identify it. In this study, artificial intelligence was used to rapidly detect breast cancer by analyzing ultrasound images from the Breast Ultrasound Images Dataset (BUSI), which consists of three categories: Benign, Malignant, and Normal. The relevant dataset comprises grayscale and masked ultrasound images of diagnosed patients. Validation tests were accomplished for quantitative outcomes utilizing the exhibition measures for each procedure. The proposed framework is discovered to be effective, substantiating outcomes with only raw image evaluation giving a 78.97% test accuracy and masked image evaluation giving 81.02% test precision, which could decrease human errors in the determination cycle. Additionally, our described framework accomplishes higher accuracy after using multi-headed CNN with two processed datasets based on masked and original images, where the accuracy hopped up to 92.31% (±2) with a Mean Squared Error (MSE) loss of 0.05. This work primarily contributes to identifying the usefulness of multi-headed CNN when working with two different types of data inputs. Finally, a web interface has been made to make this model usable for non-technical personals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36553891</pmid><doi>10.3390/healthcare10122367</doi><orcidid>https://orcid.org/0000-0003-3728-4927</orcidid><orcidid>https://orcid.org/0000-0003-2895-2284</orcidid><orcidid>https://orcid.org/0000-0001-6042-0283</orcidid><orcidid>https://orcid.org/0000-0002-7709-7774</orcidid><orcidid>https://orcid.org/0000-0002-3773-0950</orcidid><orcidid>https://orcid.org/0000-0003-3772-294X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9032 |
ispartof | Healthcare (Basel), 2022-11, Vol.10 (12), p.2367 |
issn | 2227-9032 2227-9032 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777990 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Accuracy Algorithms Analysis Artificial intelligence Breast cancer Care and treatment Classification Datasets Deep learning Diagnosis Discriminant analysis Health aspects Machine learning Mammography Neural networks Skin cancer Support vector machines Ultrasonic imaging Womens health |
title | Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Classification%20by%20Using%20Multi-Headed%20Convolutional%20Neural%20Network%20Modeling&rft.jtitle=Healthcare%20(Basel)&rft.au=Pathan,%20Refat%20Khan&rft.date=2022-11-25&rft.volume=10&rft.issue=12&rft.spage=2367&rft.pages=2367-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare10122367&rft_dat=%3Cgale_pubme%3EA744639180%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756690934&rft_id=info:pmid/36553891&rft_galeid=A744639180&rfr_iscdi=true |