Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment
: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known...
Gespeichert in:
Veröffentlicht in: | Healthcare (Basel) 2022-12, Vol.10 (12), p.2493 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2493 |
container_title | Healthcare (Basel) |
container_volume | 10 |
creator | Khanna, Narendra N Maindarkar, Mahesh A Viswanathan, Vijay Fernandes, Jose Fernandes E Paul, Sudip Bhagawati, Mrinalini Ahluwalia, Puneet Ruzsa, Zoltan Sharma, Aditya Kolluri, Raghu Singh, Inder M Laird, John R Fatemi, Mostafa Alizad, Azra Saba, Luca Agarwal, Vikas Sharma, Aman Teji, Jagjit S Al-Maini, Mustafa Rathore, Vijay Naidu, Subbaram Liblik, Kiera Johri, Amer M Turk, Monika Mohanty, Lopamudra Sobel, David W Miner, Martin Viskovic, Klaudija Tsoulfas, George Protogerou, Athanasios D Kitas, George D Fouda, Mostafa M Chaturvedi, Seemant Kalra, Mannudeep K Suri, Jasjit S |
description | : The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price.
Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches.
PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems.
The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals. |
doi_str_mv | 10.3390/healthcare10122493 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744639558</galeid><sourcerecordid>A744639558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</originalsourceid><addsrcrecordid>eNptUktPJCEQJpvdrMb1D3gwnXjZy4xANQ142GTi-sqaeNEzYejqGUw3uNBj4r9fOurEx8IBAt8jX1URcsDoHEDT4zXaflw7m5BRxnmt4QvZ5ZzLmabAv76575D9nO9pWZqBAvGd7EAjRE2Z3CV_zlwMcfAuV7GrFmn0nXfe9tVVGLHv_QqDw8qH6nLrd1L99nYVYva5eszz6jahHQcM4w_yrbN9xv2Xc4_cnZ_dnl7Orm8urk4X1zNXaznOFIqGg7Os04K1rFXYMNBLqaBxQK2qBdXcUgotBehsKylItVy2ra0bVlMBe-TXs-7DZjlg64p1sr15SH6w6clE6837n-DXZhUfjZZycikCP18EUvy7wTyawWdX4tqAcZMNl0IxJiifoEcfoPdxk0KJN6GaRmkopd-iVrZH40MXi6-bRM1C1nUDWghVUPP_oMpusTQgBux8eX9H4M8El2LOCbttRkbNNAXm8xQU0uHb6mwprz2Hf3mUra0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756689349</pqid></control><display><type>article</type><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</creator><creatorcontrib>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</creatorcontrib><description>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price.
Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches.
PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems.
The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare10122493</identifier><identifier>PMID: 36554017</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Artificial intelligence ; Decision making ; Forecasts and trends ; Health aspects ; Health care expenditures ; Health care industry ; Medical care, Cost of ; Medical diagnosis</subject><ispartof>Healthcare (Basel), 2022-12, Vol.10 (12), p.2493</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</citedby><cites>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</cites><orcidid>0000-0001-6804-5000 ; 0000-0002-2474-5723 ; 0000-0002-3825-532X ; 0000-0001-5043-7962 ; 0000-0002-4508-1233 ; 0000-0002-0448-4765 ; 0000-0001-8544-8397 ; 0000-0002-6603-9077 ; 0000-0001-9856-539X ; 0000-0003-1790-8640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36554017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanna, Narendra N</creatorcontrib><creatorcontrib>Maindarkar, Mahesh A</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Fernandes, Jose Fernandes E</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Bhagawati, Mrinalini</creatorcontrib><creatorcontrib>Ahluwalia, Puneet</creatorcontrib><creatorcontrib>Ruzsa, Zoltan</creatorcontrib><creatorcontrib>Sharma, Aditya</creatorcontrib><creatorcontrib>Kolluri, Raghu</creatorcontrib><creatorcontrib>Singh, Inder M</creatorcontrib><creatorcontrib>Laird, John R</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Agarwal, Vikas</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Teji, Jagjit S</creatorcontrib><creatorcontrib>Al-Maini, Mustafa</creatorcontrib><creatorcontrib>Rathore, Vijay</creatorcontrib><creatorcontrib>Naidu, Subbaram</creatorcontrib><creatorcontrib>Liblik, Kiera</creatorcontrib><creatorcontrib>Johri, Amer M</creatorcontrib><creatorcontrib>Turk, Monika</creatorcontrib><creatorcontrib>Mohanty, Lopamudra</creatorcontrib><creatorcontrib>Sobel, David W</creatorcontrib><creatorcontrib>Miner, Martin</creatorcontrib><creatorcontrib>Viskovic, Klaudija</creatorcontrib><creatorcontrib>Tsoulfas, George</creatorcontrib><creatorcontrib>Protogerou, Athanasios D</creatorcontrib><creatorcontrib>Kitas, George D</creatorcontrib><creatorcontrib>Fouda, Mostafa M</creatorcontrib><creatorcontrib>Chaturvedi, Seemant</creatorcontrib><creatorcontrib>Kalra, Mannudeep K</creatorcontrib><creatorcontrib>Suri, Jasjit S</creatorcontrib><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><title>Healthcare (Basel)</title><addtitle>Healthcare (Basel)</addtitle><description>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price.
Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches.
PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems.
The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</description><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Decision making</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Health care expenditures</subject><subject>Health care industry</subject><subject>Medical care, Cost of</subject><subject>Medical diagnosis</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUktPJCEQJpvdrMb1D3gwnXjZy4xANQ142GTi-sqaeNEzYejqGUw3uNBj4r9fOurEx8IBAt8jX1URcsDoHEDT4zXaflw7m5BRxnmt4QvZ5ZzLmabAv76575D9nO9pWZqBAvGd7EAjRE2Z3CV_zlwMcfAuV7GrFmn0nXfe9tVVGLHv_QqDw8qH6nLrd1L99nYVYva5eszz6jahHQcM4w_yrbN9xv2Xc4_cnZ_dnl7Orm8urk4X1zNXaznOFIqGg7Os04K1rFXYMNBLqaBxQK2qBdXcUgotBehsKylItVy2ra0bVlMBe-TXs-7DZjlg64p1sr15SH6w6clE6837n-DXZhUfjZZycikCP18EUvy7wTyawWdX4tqAcZMNl0IxJiifoEcfoPdxk0KJN6GaRmkopd-iVrZH40MXi6-bRM1C1nUDWghVUPP_oMpusTQgBux8eX9H4M8El2LOCbttRkbNNAXm8xQU0uHb6mwprz2Hf3mUra0</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Khanna, Narendra N</creator><creator>Maindarkar, Mahesh A</creator><creator>Viswanathan, Vijay</creator><creator>Fernandes, Jose Fernandes E</creator><creator>Paul, Sudip</creator><creator>Bhagawati, Mrinalini</creator><creator>Ahluwalia, Puneet</creator><creator>Ruzsa, Zoltan</creator><creator>Sharma, Aditya</creator><creator>Kolluri, Raghu</creator><creator>Singh, Inder M</creator><creator>Laird, John R</creator><creator>Fatemi, Mostafa</creator><creator>Alizad, Azra</creator><creator>Saba, Luca</creator><creator>Agarwal, Vikas</creator><creator>Sharma, Aman</creator><creator>Teji, Jagjit S</creator><creator>Al-Maini, Mustafa</creator><creator>Rathore, Vijay</creator><creator>Naidu, Subbaram</creator><creator>Liblik, Kiera</creator><creator>Johri, Amer M</creator><creator>Turk, Monika</creator><creator>Mohanty, Lopamudra</creator><creator>Sobel, David W</creator><creator>Miner, Martin</creator><creator>Viskovic, Klaudija</creator><creator>Tsoulfas, George</creator><creator>Protogerou, Athanasios D</creator><creator>Kitas, George D</creator><creator>Fouda, Mostafa M</creator><creator>Chaturvedi, Seemant</creator><creator>Kalra, Mannudeep K</creator><creator>Suri, Jasjit S</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6804-5000</orcidid><orcidid>https://orcid.org/0000-0002-2474-5723</orcidid><orcidid>https://orcid.org/0000-0002-3825-532X</orcidid><orcidid>https://orcid.org/0000-0001-5043-7962</orcidid><orcidid>https://orcid.org/0000-0002-4508-1233</orcidid><orcidid>https://orcid.org/0000-0002-0448-4765</orcidid><orcidid>https://orcid.org/0000-0001-8544-8397</orcidid><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0001-9856-539X</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid></search><sort><creationdate>20221209</creationdate><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><author>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Decision making</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Health care expenditures</topic><topic>Health care industry</topic><topic>Medical care, Cost of</topic><topic>Medical diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Narendra N</creatorcontrib><creatorcontrib>Maindarkar, Mahesh A</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Fernandes, Jose Fernandes E</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Bhagawati, Mrinalini</creatorcontrib><creatorcontrib>Ahluwalia, Puneet</creatorcontrib><creatorcontrib>Ruzsa, Zoltan</creatorcontrib><creatorcontrib>Sharma, Aditya</creatorcontrib><creatorcontrib>Kolluri, Raghu</creatorcontrib><creatorcontrib>Singh, Inder M</creatorcontrib><creatorcontrib>Laird, John R</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Agarwal, Vikas</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Teji, Jagjit S</creatorcontrib><creatorcontrib>Al-Maini, Mustafa</creatorcontrib><creatorcontrib>Rathore, Vijay</creatorcontrib><creatorcontrib>Naidu, Subbaram</creatorcontrib><creatorcontrib>Liblik, Kiera</creatorcontrib><creatorcontrib>Johri, Amer M</creatorcontrib><creatorcontrib>Turk, Monika</creatorcontrib><creatorcontrib>Mohanty, Lopamudra</creatorcontrib><creatorcontrib>Sobel, David W</creatorcontrib><creatorcontrib>Miner, Martin</creatorcontrib><creatorcontrib>Viskovic, Klaudija</creatorcontrib><creatorcontrib>Tsoulfas, George</creatorcontrib><creatorcontrib>Protogerou, Athanasios D</creatorcontrib><creatorcontrib>Kitas, George D</creatorcontrib><creatorcontrib>Fouda, Mostafa M</creatorcontrib><creatorcontrib>Chaturvedi, Seemant</creatorcontrib><creatorcontrib>Kalra, Mannudeep K</creatorcontrib><creatorcontrib>Suri, Jasjit S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Narendra N</au><au>Maindarkar, Mahesh A</au><au>Viswanathan, Vijay</au><au>Fernandes, Jose Fernandes E</au><au>Paul, Sudip</au><au>Bhagawati, Mrinalini</au><au>Ahluwalia, Puneet</au><au>Ruzsa, Zoltan</au><au>Sharma, Aditya</au><au>Kolluri, Raghu</au><au>Singh, Inder M</au><au>Laird, John R</au><au>Fatemi, Mostafa</au><au>Alizad, Azra</au><au>Saba, Luca</au><au>Agarwal, Vikas</au><au>Sharma, Aman</au><au>Teji, Jagjit S</au><au>Al-Maini, Mustafa</au><au>Rathore, Vijay</au><au>Naidu, Subbaram</au><au>Liblik, Kiera</au><au>Johri, Amer M</au><au>Turk, Monika</au><au>Mohanty, Lopamudra</au><au>Sobel, David W</au><au>Miner, Martin</au><au>Viskovic, Klaudija</au><au>Tsoulfas, George</au><au>Protogerou, Athanasios D</au><au>Kitas, George D</au><au>Fouda, Mostafa M</au><au>Chaturvedi, Seemant</au><au>Kalra, Mannudeep K</au><au>Suri, Jasjit S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</atitle><jtitle>Healthcare (Basel)</jtitle><addtitle>Healthcare (Basel)</addtitle><date>2022-12-09</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>2493</spage><pages>2493-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price.
Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches.
PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems.
The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36554017</pmid><doi>10.3390/healthcare10122493</doi><orcidid>https://orcid.org/0000-0001-6804-5000</orcidid><orcidid>https://orcid.org/0000-0002-2474-5723</orcidid><orcidid>https://orcid.org/0000-0002-3825-532X</orcidid><orcidid>https://orcid.org/0000-0001-5043-7962</orcidid><orcidid>https://orcid.org/0000-0002-4508-1233</orcidid><orcidid>https://orcid.org/0000-0002-0448-4765</orcidid><orcidid>https://orcid.org/0000-0001-8544-8397</orcidid><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0001-9856-539X</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9032 |
ispartof | Healthcare (Basel), 2022-12, Vol.10 (12), p.2493 |
issn | 2227-9032 2227-9032 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777836 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Analysis Artificial intelligence Decision making Forecasts and trends Health aspects Health care expenditures Health care industry Medical care, Cost of Medical diagnosis |
title | Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economics%20of%20Artificial%20Intelligence%20in%20Healthcare:%20Diagnosis%20vs.%20Treatment&rft.jtitle=Healthcare%20(Basel)&rft.au=Khanna,%20Narendra%20N&rft.date=2022-12-09&rft.volume=10&rft.issue=12&rft.spage=2493&rft.pages=2493-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare10122493&rft_dat=%3Cgale_pubme%3EA744639558%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756689349&rft_id=info:pmid/36554017&rft_galeid=A744639558&rfr_iscdi=true |