Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment

: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Healthcare (Basel) 2022-12, Vol.10 (12), p.2493
Hauptverfasser: Khanna, Narendra N, Maindarkar, Mahesh A, Viswanathan, Vijay, Fernandes, Jose Fernandes E, Paul, Sudip, Bhagawati, Mrinalini, Ahluwalia, Puneet, Ruzsa, Zoltan, Sharma, Aditya, Kolluri, Raghu, Singh, Inder M, Laird, John R, Fatemi, Mostafa, Alizad, Azra, Saba, Luca, Agarwal, Vikas, Sharma, Aman, Teji, Jagjit S, Al-Maini, Mustafa, Rathore, Vijay, Naidu, Subbaram, Liblik, Kiera, Johri, Amer M, Turk, Monika, Mohanty, Lopamudra, Sobel, David W, Miner, Martin, Viskovic, Klaudija, Tsoulfas, George, Protogerou, Athanasios D, Kitas, George D, Fouda, Mostafa M, Chaturvedi, Seemant, Kalra, Mannudeep K, Suri, Jasjit S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2493
container_title Healthcare (Basel)
container_volume 10
creator Khanna, Narendra N
Maindarkar, Mahesh A
Viswanathan, Vijay
Fernandes, Jose Fernandes E
Paul, Sudip
Bhagawati, Mrinalini
Ahluwalia, Puneet
Ruzsa, Zoltan
Sharma, Aditya
Kolluri, Raghu
Singh, Inder M
Laird, John R
Fatemi, Mostafa
Alizad, Azra
Saba, Luca
Agarwal, Vikas
Sharma, Aman
Teji, Jagjit S
Al-Maini, Mustafa
Rathore, Vijay
Naidu, Subbaram
Liblik, Kiera
Johri, Amer M
Turk, Monika
Mohanty, Lopamudra
Sobel, David W
Miner, Martin
Viskovic, Klaudija
Tsoulfas, George
Protogerou, Athanasios D
Kitas, George D
Fouda, Mostafa M
Chaturvedi, Seemant
Kalra, Mannudeep K
Suri, Jasjit S
description : The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.
doi_str_mv 10.3390/healthcare10122493
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744639558</galeid><sourcerecordid>A744639558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</originalsourceid><addsrcrecordid>eNptUktPJCEQJpvdrMb1D3gwnXjZy4xANQ142GTi-sqaeNEzYejqGUw3uNBj4r9fOurEx8IBAt8jX1URcsDoHEDT4zXaflw7m5BRxnmt4QvZ5ZzLmabAv76575D9nO9pWZqBAvGd7EAjRE2Z3CV_zlwMcfAuV7GrFmn0nXfe9tVVGLHv_QqDw8qH6nLrd1L99nYVYva5eszz6jahHQcM4w_yrbN9xv2Xc4_cnZ_dnl7Orm8urk4X1zNXaznOFIqGg7Os04K1rFXYMNBLqaBxQK2qBdXcUgotBehsKylItVy2ra0bVlMBe-TXs-7DZjlg64p1sr15SH6w6clE6837n-DXZhUfjZZycikCP18EUvy7wTyawWdX4tqAcZMNl0IxJiifoEcfoPdxk0KJN6GaRmkopd-iVrZH40MXi6-bRM1C1nUDWghVUPP_oMpusTQgBux8eX9H4M8El2LOCbttRkbNNAXm8xQU0uHb6mwprz2Hf3mUra0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756689349</pqid></control><display><type>article</type><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</creator><creatorcontrib>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</creatorcontrib><description>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare10122493</identifier><identifier>PMID: 36554017</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Artificial intelligence ; Decision making ; Forecasts and trends ; Health aspects ; Health care expenditures ; Health care industry ; Medical care, Cost of ; Medical diagnosis</subject><ispartof>Healthcare (Basel), 2022-12, Vol.10 (12), p.2493</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</citedby><cites>FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</cites><orcidid>0000-0001-6804-5000 ; 0000-0002-2474-5723 ; 0000-0002-3825-532X ; 0000-0001-5043-7962 ; 0000-0002-4508-1233 ; 0000-0002-0448-4765 ; 0000-0001-8544-8397 ; 0000-0002-6603-9077 ; 0000-0001-9856-539X ; 0000-0003-1790-8640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777836/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9777836/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36554017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khanna, Narendra N</creatorcontrib><creatorcontrib>Maindarkar, Mahesh A</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Fernandes, Jose Fernandes E</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Bhagawati, Mrinalini</creatorcontrib><creatorcontrib>Ahluwalia, Puneet</creatorcontrib><creatorcontrib>Ruzsa, Zoltan</creatorcontrib><creatorcontrib>Sharma, Aditya</creatorcontrib><creatorcontrib>Kolluri, Raghu</creatorcontrib><creatorcontrib>Singh, Inder M</creatorcontrib><creatorcontrib>Laird, John R</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Agarwal, Vikas</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Teji, Jagjit S</creatorcontrib><creatorcontrib>Al-Maini, Mustafa</creatorcontrib><creatorcontrib>Rathore, Vijay</creatorcontrib><creatorcontrib>Naidu, Subbaram</creatorcontrib><creatorcontrib>Liblik, Kiera</creatorcontrib><creatorcontrib>Johri, Amer M</creatorcontrib><creatorcontrib>Turk, Monika</creatorcontrib><creatorcontrib>Mohanty, Lopamudra</creatorcontrib><creatorcontrib>Sobel, David W</creatorcontrib><creatorcontrib>Miner, Martin</creatorcontrib><creatorcontrib>Viskovic, Klaudija</creatorcontrib><creatorcontrib>Tsoulfas, George</creatorcontrib><creatorcontrib>Protogerou, Athanasios D</creatorcontrib><creatorcontrib>Kitas, George D</creatorcontrib><creatorcontrib>Fouda, Mostafa M</creatorcontrib><creatorcontrib>Chaturvedi, Seemant</creatorcontrib><creatorcontrib>Kalra, Mannudeep K</creatorcontrib><creatorcontrib>Suri, Jasjit S</creatorcontrib><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><title>Healthcare (Basel)</title><addtitle>Healthcare (Basel)</addtitle><description>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</description><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Decision making</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Health care expenditures</subject><subject>Health care industry</subject><subject>Medical care, Cost of</subject><subject>Medical diagnosis</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptUktPJCEQJpvdrMb1D3gwnXjZy4xANQ142GTi-sqaeNEzYejqGUw3uNBj4r9fOurEx8IBAt8jX1URcsDoHEDT4zXaflw7m5BRxnmt4QvZ5ZzLmabAv76575D9nO9pWZqBAvGd7EAjRE2Z3CV_zlwMcfAuV7GrFmn0nXfe9tVVGLHv_QqDw8qH6nLrd1L99nYVYva5eszz6jahHQcM4w_yrbN9xv2Xc4_cnZ_dnl7Orm8urk4X1zNXaznOFIqGg7Os04K1rFXYMNBLqaBxQK2qBdXcUgotBehsKylItVy2ra0bVlMBe-TXs-7DZjlg64p1sr15SH6w6clE6837n-DXZhUfjZZycikCP18EUvy7wTyawWdX4tqAcZMNl0IxJiifoEcfoPdxk0KJN6GaRmkopd-iVrZH40MXi6-bRM1C1nUDWghVUPP_oMpusTQgBux8eX9H4M8El2LOCbttRkbNNAXm8xQU0uHb6mwprz2Hf3mUra0</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Khanna, Narendra N</creator><creator>Maindarkar, Mahesh A</creator><creator>Viswanathan, Vijay</creator><creator>Fernandes, Jose Fernandes E</creator><creator>Paul, Sudip</creator><creator>Bhagawati, Mrinalini</creator><creator>Ahluwalia, Puneet</creator><creator>Ruzsa, Zoltan</creator><creator>Sharma, Aditya</creator><creator>Kolluri, Raghu</creator><creator>Singh, Inder M</creator><creator>Laird, John R</creator><creator>Fatemi, Mostafa</creator><creator>Alizad, Azra</creator><creator>Saba, Luca</creator><creator>Agarwal, Vikas</creator><creator>Sharma, Aman</creator><creator>Teji, Jagjit S</creator><creator>Al-Maini, Mustafa</creator><creator>Rathore, Vijay</creator><creator>Naidu, Subbaram</creator><creator>Liblik, Kiera</creator><creator>Johri, Amer M</creator><creator>Turk, Monika</creator><creator>Mohanty, Lopamudra</creator><creator>Sobel, David W</creator><creator>Miner, Martin</creator><creator>Viskovic, Klaudija</creator><creator>Tsoulfas, George</creator><creator>Protogerou, Athanasios D</creator><creator>Kitas, George D</creator><creator>Fouda, Mostafa M</creator><creator>Chaturvedi, Seemant</creator><creator>Kalra, Mannudeep K</creator><creator>Suri, Jasjit S</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6804-5000</orcidid><orcidid>https://orcid.org/0000-0002-2474-5723</orcidid><orcidid>https://orcid.org/0000-0002-3825-532X</orcidid><orcidid>https://orcid.org/0000-0001-5043-7962</orcidid><orcidid>https://orcid.org/0000-0002-4508-1233</orcidid><orcidid>https://orcid.org/0000-0002-0448-4765</orcidid><orcidid>https://orcid.org/0000-0001-8544-8397</orcidid><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0001-9856-539X</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid></search><sort><creationdate>20221209</creationdate><title>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</title><author>Khanna, Narendra N ; Maindarkar, Mahesh A ; Viswanathan, Vijay ; Fernandes, Jose Fernandes E ; Paul, Sudip ; Bhagawati, Mrinalini ; Ahluwalia, Puneet ; Ruzsa, Zoltan ; Sharma, Aditya ; Kolluri, Raghu ; Singh, Inder M ; Laird, John R ; Fatemi, Mostafa ; Alizad, Azra ; Saba, Luca ; Agarwal, Vikas ; Sharma, Aman ; Teji, Jagjit S ; Al-Maini, Mustafa ; Rathore, Vijay ; Naidu, Subbaram ; Liblik, Kiera ; Johri, Amer M ; Turk, Monika ; Mohanty, Lopamudra ; Sobel, David W ; Miner, Martin ; Viskovic, Klaudija ; Tsoulfas, George ; Protogerou, Athanasios D ; Kitas, George D ; Fouda, Mostafa M ; Chaturvedi, Seemant ; Kalra, Mannudeep K ; Suri, Jasjit S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-8e5623ca1f951d1d8e6139b7836c30a845092a003d033fad70378bbdda4614053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Decision making</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Health care expenditures</topic><topic>Health care industry</topic><topic>Medical care, Cost of</topic><topic>Medical diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khanna, Narendra N</creatorcontrib><creatorcontrib>Maindarkar, Mahesh A</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Fernandes, Jose Fernandes E</creatorcontrib><creatorcontrib>Paul, Sudip</creatorcontrib><creatorcontrib>Bhagawati, Mrinalini</creatorcontrib><creatorcontrib>Ahluwalia, Puneet</creatorcontrib><creatorcontrib>Ruzsa, Zoltan</creatorcontrib><creatorcontrib>Sharma, Aditya</creatorcontrib><creatorcontrib>Kolluri, Raghu</creatorcontrib><creatorcontrib>Singh, Inder M</creatorcontrib><creatorcontrib>Laird, John R</creatorcontrib><creatorcontrib>Fatemi, Mostafa</creatorcontrib><creatorcontrib>Alizad, Azra</creatorcontrib><creatorcontrib>Saba, Luca</creatorcontrib><creatorcontrib>Agarwal, Vikas</creatorcontrib><creatorcontrib>Sharma, Aman</creatorcontrib><creatorcontrib>Teji, Jagjit S</creatorcontrib><creatorcontrib>Al-Maini, Mustafa</creatorcontrib><creatorcontrib>Rathore, Vijay</creatorcontrib><creatorcontrib>Naidu, Subbaram</creatorcontrib><creatorcontrib>Liblik, Kiera</creatorcontrib><creatorcontrib>Johri, Amer M</creatorcontrib><creatorcontrib>Turk, Monika</creatorcontrib><creatorcontrib>Mohanty, Lopamudra</creatorcontrib><creatorcontrib>Sobel, David W</creatorcontrib><creatorcontrib>Miner, Martin</creatorcontrib><creatorcontrib>Viskovic, Klaudija</creatorcontrib><creatorcontrib>Tsoulfas, George</creatorcontrib><creatorcontrib>Protogerou, Athanasios D</creatorcontrib><creatorcontrib>Kitas, George D</creatorcontrib><creatorcontrib>Fouda, Mostafa M</creatorcontrib><creatorcontrib>Chaturvedi, Seemant</creatorcontrib><creatorcontrib>Kalra, Mannudeep K</creatorcontrib><creatorcontrib>Suri, Jasjit S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, Narendra N</au><au>Maindarkar, Mahesh A</au><au>Viswanathan, Vijay</au><au>Fernandes, Jose Fernandes E</au><au>Paul, Sudip</au><au>Bhagawati, Mrinalini</au><au>Ahluwalia, Puneet</au><au>Ruzsa, Zoltan</au><au>Sharma, Aditya</au><au>Kolluri, Raghu</au><au>Singh, Inder M</au><au>Laird, John R</au><au>Fatemi, Mostafa</au><au>Alizad, Azra</au><au>Saba, Luca</au><au>Agarwal, Vikas</au><au>Sharma, Aman</au><au>Teji, Jagjit S</au><au>Al-Maini, Mustafa</au><au>Rathore, Vijay</au><au>Naidu, Subbaram</au><au>Liblik, Kiera</au><au>Johri, Amer M</au><au>Turk, Monika</au><au>Mohanty, Lopamudra</au><au>Sobel, David W</au><au>Miner, Martin</au><au>Viskovic, Klaudija</au><au>Tsoulfas, George</au><au>Protogerou, Athanasios D</au><au>Kitas, George D</au><au>Fouda, Mostafa M</au><au>Chaturvedi, Seemant</au><au>Kalra, Mannudeep K</au><au>Suri, Jasjit S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment</atitle><jtitle>Healthcare (Basel)</jtitle><addtitle>Healthcare (Basel)</addtitle><date>2022-12-09</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>2493</spage><pages>2493-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis. This novel study aims to evaluate AI technology in the context of healthcare costs, namely in the areas of diagnosis and treatment, and then compare it to the traditional or non-AI-based approaches. PRISMA was used to select the best 200 studies for AI in healthcare with a primary focus on cost reduction, especially towards diagnosis and treatment. We defined the diagnosis and treatment architectures, investigated their characteristics, and categorized the roles that AI plays in the diagnostic and therapeutic paradigms. We experimented with various combinations of different assumptions by integrating AI and then comparing it against conventional costs. Lastly, we dwell on three powerful future concepts of AI, namely, pruning, bias, explainability, and regulatory approvals of AI systems. The model shows tremendous cost savings using AI tools in diagnosis and treatment. The economics of AI can be improved by incorporating pruning, reduction in AI bias, explainability, and regulatory approvals.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36554017</pmid><doi>10.3390/healthcare10122493</doi><orcidid>https://orcid.org/0000-0001-6804-5000</orcidid><orcidid>https://orcid.org/0000-0002-2474-5723</orcidid><orcidid>https://orcid.org/0000-0002-3825-532X</orcidid><orcidid>https://orcid.org/0000-0001-5043-7962</orcidid><orcidid>https://orcid.org/0000-0002-4508-1233</orcidid><orcidid>https://orcid.org/0000-0002-0448-4765</orcidid><orcidid>https://orcid.org/0000-0001-8544-8397</orcidid><orcidid>https://orcid.org/0000-0002-6603-9077</orcidid><orcidid>https://orcid.org/0000-0001-9856-539X</orcidid><orcidid>https://orcid.org/0000-0003-1790-8640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9032
ispartof Healthcare (Basel), 2022-12, Vol.10 (12), p.2493
issn 2227-9032
2227-9032
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9777836
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Analysis
Artificial intelligence
Decision making
Forecasts and trends
Health aspects
Health care expenditures
Health care industry
Medical care, Cost of
Medical diagnosis
title Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Economics%20of%20Artificial%20Intelligence%20in%20Healthcare:%20Diagnosis%20vs.%20Treatment&rft.jtitle=Healthcare%20(Basel)&rft.au=Khanna,%20Narendra%20N&rft.date=2022-12-09&rft.volume=10&rft.issue=12&rft.spage=2493&rft.pages=2493-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare10122493&rft_dat=%3Cgale_pubme%3EA744639558%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756689349&rft_id=info:pmid/36554017&rft_galeid=A744639558&rfr_iscdi=true