Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography
Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (...
Gespeichert in:
Veröffentlicht in: | Biomedical optics express 2022-12, Vol.13 (12), p.6284-6299 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6299 |
---|---|
container_issue | 12 |
container_start_page | 6284 |
container_title | Biomedical optics express |
container_volume | 13 |
creator | Cao, Caiguang Xiao, Anqi Cai, Meishan Shen, Biluo Guo, Lishuang Shi, Xiaojing Tian, Jie Hu, Zhenhua |
description | Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and
experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research. |
doi_str_mv | 10.1364/BOE.474982 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760171571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMoKurFHyA9ilBNts1HL4LKqguLguhRQjqdrNW0WZNW3X9vZXVZ5zIzzMs7MzyEHDJ6yjKRn13ej09zmRdqtEF2R4yLVFLFN9fqHXIQ4ysdIs8lzdQ22ckEVwWXfJc8j7-g7kxX-zYtTcQqsb1ziwR82yJ0Q99i9-nDW2J9SOYBoY6Y3E0e0skksa73ASNgC5g03iH0zoSk842fBTN_WeyTLWtcxIPfvEeersePV7fp9P5mcnUxTSGTqktR5kJZWnBblcJaQJCsZDBiVclKyyuwBRcImElKwajMGmUFGFEoKZBZyPbI-dJ33pcNVsNBXTBOz0PdmLDQ3tT6_6StX_TMf-hCylwJMRgc_xoE_95j7HRTD385Z1r0fdQjKSiTjEs2SE-WUgg-xoB2tYZR_YNED0j0EskgPlo_bCX9A5B9A_8xiiE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760171571</pqid></control><display><type>article</type><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</creator><creatorcontrib>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</creatorcontrib><description>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and
experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.474982</identifier><identifier>PMID: 36589575</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2022-12, Vol.13 (12), p.6284-6299</ispartof><rights>2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.</rights><rights>2022 Optica Publishing Group under the terms of the 2022 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</citedby><cites>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</cites><orcidid>0000-0003-0498-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774866/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774866/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36589575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Caiguang</creatorcontrib><creatorcontrib>Xiao, Anqi</creatorcontrib><creatorcontrib>Cai, Meishan</creatorcontrib><creatorcontrib>Shen, Biluo</creatorcontrib><creatorcontrib>Guo, Lishuang</creatorcontrib><creatorcontrib>Shi, Xiaojing</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and
experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LxDAQhoMoKurFHyA9ilBNts1HL4LKqguLguhRQjqdrNW0WZNW3X9vZXVZ5zIzzMs7MzyEHDJ6yjKRn13ej09zmRdqtEF2R4yLVFLFN9fqHXIQ4ysdIs8lzdQ22ckEVwWXfJc8j7-g7kxX-zYtTcQqsb1ziwR82yJ0Q99i9-nDW2J9SOYBoY6Y3E0e0skksa73ASNgC5g03iH0zoSk842fBTN_WeyTLWtcxIPfvEeersePV7fp9P5mcnUxTSGTqktR5kJZWnBblcJaQJCsZDBiVclKyyuwBRcImElKwajMGmUFGFEoKZBZyPbI-dJ33pcNVsNBXTBOz0PdmLDQ3tT6_6StX_TMf-hCylwJMRgc_xoE_95j7HRTD385Z1r0fdQjKSiTjEs2SE-WUgg-xoB2tYZR_YNED0j0EskgPlo_bCX9A5B9A_8xiiE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cao, Caiguang</creator><creator>Xiao, Anqi</creator><creator>Cai, Meishan</creator><creator>Shen, Biluo</creator><creator>Guo, Lishuang</creator><creator>Shi, Xiaojing</creator><creator>Tian, Jie</creator><creator>Hu, Zhenhua</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid></search><sort><creationdate>20221201</creationdate><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><author>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Caiguang</creatorcontrib><creatorcontrib>Xiao, Anqi</creatorcontrib><creatorcontrib>Cai, Meishan</creatorcontrib><creatorcontrib>Shen, Biluo</creatorcontrib><creatorcontrib>Guo, Lishuang</creatorcontrib><creatorcontrib>Shi, Xiaojing</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Caiguang</au><au>Xiao, Anqi</au><au>Cai, Meishan</au><au>Shen, Biluo</au><au>Guo, Lishuang</au><au>Shi, Xiaojing</au><au>Tian, Jie</au><au>Hu, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>6284</spage><epage>6299</epage><pages>6284-6299</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and
experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>36589575</pmid><doi>10.1364/BOE.474982</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-7085 |
ispartof | Biomedical optics express, 2022-12, Vol.13 (12), p.6284-6299 |
issn | 2156-7085 2156-7085 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774866 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
title | Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation-based%20fully%20connected%20network%20for%20precise%20NIR-II%20fluorescence%20molecular%20tomography&rft.jtitle=Biomedical%20optics%20express&rft.au=Cao,%20Caiguang&rft.date=2022-12-01&rft.volume=13&rft.issue=12&rft.spage=6284&rft.epage=6299&rft.pages=6284-6299&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.474982&rft_dat=%3Cproquest_pubme%3E2760171571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760171571&rft_id=info:pmid/36589575&rfr_iscdi=true |