Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography

Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical optics express 2022-12, Vol.13 (12), p.6284-6299
Hauptverfasser: Cao, Caiguang, Xiao, Anqi, Cai, Meishan, Shen, Biluo, Guo, Lishuang, Shi, Xiaojing, Tian, Jie, Hu, Zhenhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6299
container_issue 12
container_start_page 6284
container_title Biomedical optics express
container_volume 13
creator Cao, Caiguang
Xiao, Anqi
Cai, Meishan
Shen, Biluo
Guo, Lishuang
Shi, Xiaojing
Tian, Jie
Hu, Zhenhua
description Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.
doi_str_mv 10.1364/BOE.474982
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760171571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</originalsourceid><addsrcrecordid>eNpVkU1LxDAQhoMoKurFHyA9ilBNts1HL4LKqguLguhRQjqdrNW0WZNW3X9vZXVZ5zIzzMs7MzyEHDJ6yjKRn13ej09zmRdqtEF2R4yLVFLFN9fqHXIQ4ysdIs8lzdQ22ckEVwWXfJc8j7-g7kxX-zYtTcQqsb1ziwR82yJ0Q99i9-nDW2J9SOYBoY6Y3E0e0skksa73ASNgC5g03iH0zoSk842fBTN_WeyTLWtcxIPfvEeersePV7fp9P5mcnUxTSGTqktR5kJZWnBblcJaQJCsZDBiVclKyyuwBRcImElKwajMGmUFGFEoKZBZyPbI-dJ33pcNVsNBXTBOz0PdmLDQ3tT6_6StX_TMf-hCylwJMRgc_xoE_95j7HRTD385Z1r0fdQjKSiTjEs2SE-WUgg-xoB2tYZR_YNED0j0EskgPlo_bCX9A5B9A_8xiiE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760171571</pqid></control><display><type>article</type><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</creator><creatorcontrib>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</creatorcontrib><description>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</description><identifier>ISSN: 2156-7085</identifier><identifier>EISSN: 2156-7085</identifier><identifier>DOI: 10.1364/BOE.474982</identifier><identifier>PMID: 36589575</identifier><language>eng</language><publisher>United States: Optica Publishing Group</publisher><ispartof>Biomedical optics express, 2022-12, Vol.13 (12), p.6284-6299</ispartof><rights>2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.</rights><rights>2022 Optica Publishing Group under the terms of the 2022 Optica Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</citedby><cites>FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</cites><orcidid>0000-0003-0498-0432</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774866/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9774866/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36589575$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Caiguang</creatorcontrib><creatorcontrib>Xiao, Anqi</creatorcontrib><creatorcontrib>Cai, Meishan</creatorcontrib><creatorcontrib>Shen, Biluo</creatorcontrib><creatorcontrib>Guo, Lishuang</creatorcontrib><creatorcontrib>Shi, Xiaojing</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><title>Biomedical optics express</title><addtitle>Biomed Opt Express</addtitle><description>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</description><issn>2156-7085</issn><issn>2156-7085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LxDAQhoMoKurFHyA9ilBNts1HL4LKqguLguhRQjqdrNW0WZNW3X9vZXVZ5zIzzMs7MzyEHDJ6yjKRn13ej09zmRdqtEF2R4yLVFLFN9fqHXIQ4ysdIs8lzdQ22ckEVwWXfJc8j7-g7kxX-zYtTcQqsb1ziwR82yJ0Q99i9-nDW2J9SOYBoY6Y3E0e0skksa73ASNgC5g03iH0zoSk842fBTN_WeyTLWtcxIPfvEeersePV7fp9P5mcnUxTSGTqktR5kJZWnBblcJaQJCsZDBiVclKyyuwBRcImElKwajMGmUFGFEoKZBZyPbI-dJ33pcNVsNBXTBOz0PdmLDQ3tT6_6StX_TMf-hCylwJMRgc_xoE_95j7HRTD385Z1r0fdQjKSiTjEs2SE-WUgg-xoB2tYZR_YNED0j0EskgPlo_bCX9A5B9A_8xiiE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Cao, Caiguang</creator><creator>Xiao, Anqi</creator><creator>Cai, Meishan</creator><creator>Shen, Biluo</creator><creator>Guo, Lishuang</creator><creator>Shi, Xiaojing</creator><creator>Tian, Jie</creator><creator>Hu, Zhenhua</creator><general>Optica Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid></search><sort><creationdate>20221201</creationdate><title>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</title><author>Cao, Caiguang ; Xiao, Anqi ; Cai, Meishan ; Shen, Biluo ; Guo, Lishuang ; Shi, Xiaojing ; Tian, Jie ; Hu, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-e7468f095fdb6ffcec71b1c21db1bf5dcf956ece3700ca83fa8f6ca69876e1fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Caiguang</creatorcontrib><creatorcontrib>Xiao, Anqi</creatorcontrib><creatorcontrib>Cai, Meishan</creatorcontrib><creatorcontrib>Shen, Biluo</creatorcontrib><creatorcontrib>Guo, Lishuang</creatorcontrib><creatorcontrib>Shi, Xiaojing</creatorcontrib><creatorcontrib>Tian, Jie</creatorcontrib><creatorcontrib>Hu, Zhenhua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Caiguang</au><au>Xiao, Anqi</au><au>Cai, Meishan</au><au>Shen, Biluo</au><au>Guo, Lishuang</au><au>Shi, Xiaojing</au><au>Tian, Jie</au><au>Hu, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography</atitle><jtitle>Biomedical optics express</jtitle><addtitle>Biomed Opt Express</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>6284</spage><epage>6299</epage><pages>6284-6299</pages><issn>2156-7085</issn><eissn>2156-7085</eissn><abstract>Fluorescence molecular tomography (FMT) is a novel imaging modality to obtain fluorescence biomarkers' three-dimensional (3D) distribution. However, the simplified mathematical model and complicated inverse problem limit it to achieving precise results. In this study, the second near-infrared (NIR-II) fluorescence imaging was adopted to mitigate tissue scattering and reduce noise interference. An excitation-based fully connected network was proposed to model the inverse process of NIR-II photon propagation and directly obtain the 3D distribution of the light source. An excitation block was embedded in the network allowing it to autonomously pay more attention to neurons related to the light source. The barycenter error was added to the loss function to improve the localization accuracy of the light source. Both numerical simulation and experiments showed the superiority of the novel NIR-II FMT reconstruction strategy over the baseline methods. This strategy was expected to facilitate the application of machine learning in biomedical research.</abstract><cop>United States</cop><pub>Optica Publishing Group</pub><pmid>36589575</pmid><doi>10.1364/BOE.474982</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0498-0432</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-7085
ispartof Biomedical optics express, 2022-12, Vol.13 (12), p.6284-6299
issn 2156-7085
2156-7085
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9774866
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Excitation-based fully connected network for precise NIR-II fluorescence molecular tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excitation-based%20fully%20connected%20network%20for%20precise%20NIR-II%20fluorescence%20molecular%20tomography&rft.jtitle=Biomedical%20optics%20express&rft.au=Cao,%20Caiguang&rft.date=2022-12-01&rft.volume=13&rft.issue=12&rft.spage=6284&rft.epage=6299&rft.pages=6284-6299&rft.issn=2156-7085&rft.eissn=2156-7085&rft_id=info:doi/10.1364/BOE.474982&rft_dat=%3Cproquest_pubme%3E2760171571%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760171571&rft_id=info:pmid/36589575&rfr_iscdi=true