Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase

Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray cryst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2022-12, Vol.17 (12), p.3407-3419
Hauptverfasser: V. T. Minnow, Yacoba, Suthagar, Kajitha, Clinch, Keith, Ducati, Rodrigo G., Ghosh, Agnidipta, Buckler, Joshua N., Harijan, Rajesh K., Cahill, Sean M., Tyler, Peter C., Schramm, Vern L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3419
container_issue 12
container_start_page 3407
container_title ACS chemical biology
container_volume 17
creator V. T. Minnow, Yacoba
Suthagar, Kajitha
Clinch, Keith
Ducati, Rodrigo G.
Ghosh, Agnidipta
Buckler, Joshua N.
Harijan, Rajesh K.
Cahill, Sean M.
Tyler, Peter C.
Schramm, Vern L.
description Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic K i of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.
doi_str_mv 10.1021/acschembio.2c00546
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9772100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739432547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-91a6815f96729fcaaa5657b5e5cb20d505f9454129db5366e5c4aaadd6004e093</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxq0K1JbCC_SAIk5cdvF_xxckVEFbqYgeisTNmjhO4yqxUztB7I134A15Egy7LOXSk0czv_k8Mx9CpwSvCabkDdhsezc2Pq6pxVhweYCOiRB8VWumnuxjqo_Qs5zvMOZM1voQHTHJCdNKHKPxMvS-8bOPoYLQVh-d7SH4PFaxq64HyGNs_TJWHQzWT5BKeLGZ4jcIc--D-_n9x_lS-D_Rl12yuu5jnvqYfBPzZpgThNy5BNk9R0-LUHYvdu8J-vzh_c3Zxerq0_nl2burFXBZzytNQNZEdFoqqjsLAEIK1QgnbENxK3ApccEJ1W0jmJQlzwvUtrKs6LBmJ-jtVndamtG11oUyxGCm5EdIGxPBm_8rwffmNn41WilKMC4Cr7YCMc_eZOvnchcbQ3B2NpRTxlVdoNe7X1K8X1yezeizdcMAwcUlG6qY5owKrgpKt6hNMefkuv0sBJvfZpp_ZpqdmaXp5cMt9i1_3SvAeguUZnMXlxTKUR9T_AVXNLLe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739432547</pqid></control><display><type>article</type><title>Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>V. T. Minnow, Yacoba ; Suthagar, Kajitha ; Clinch, Keith ; Ducati, Rodrigo G. ; Ghosh, Agnidipta ; Buckler, Joshua N. ; Harijan, Rajesh K. ; Cahill, Sean M. ; Tyler, Peter C. ; Schramm, Vern L.</creator><creatorcontrib>V. T. Minnow, Yacoba ; Suthagar, Kajitha ; Clinch, Keith ; Ducati, Rodrigo G. ; Ghosh, Agnidipta ; Buckler, Joshua N. ; Harijan, Rajesh K. ; Cahill, Sean M. ; Tyler, Peter C. ; Schramm, Vern L. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic K i of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.2c00546</identifier><identifier>PMID: 36413975</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biochemistry &amp; Molecular Biology ; Diphosphates ; Hypoxanthines ; Isotopes ; Kinetics ; Oxygen ; Plasmodium falciparum</subject><ispartof>ACS chemical biology, 2022-12, Vol.17 (12), p.3407-3419</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-91a6815f96729fcaaa5657b5e5cb20d505f9454129db5366e5c4aaadd6004e093</citedby><cites>FETCH-LOGICAL-a468t-91a6815f96729fcaaa5657b5e5cb20d505f9454129db5366e5c4aaadd6004e093</cites><orcidid>0000-0002-4397-9947 ; 0000-0002-8783-8847 ; 0000-0002-3151-6208 ; 0000-0002-8056-1929 ; 0000-0003-2877-0704 ; 0000000280561929 ; 0000000328770704 ; 0000000287838847 ; 0000000231516208 ; 0000000243979947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.2c00546$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.2c00546$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36413975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2423478$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>V. T. Minnow, Yacoba</creatorcontrib><creatorcontrib>Suthagar, Kajitha</creatorcontrib><creatorcontrib>Clinch, Keith</creatorcontrib><creatorcontrib>Ducati, Rodrigo G.</creatorcontrib><creatorcontrib>Ghosh, Agnidipta</creatorcontrib><creatorcontrib>Buckler, Joshua N.</creatorcontrib><creatorcontrib>Harijan, Rajesh K.</creatorcontrib><creatorcontrib>Cahill, Sean M.</creatorcontrib><creatorcontrib>Tyler, Peter C.</creatorcontrib><creatorcontrib>Schramm, Vern L.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic K i of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.</description><subject>Biochemistry &amp; Molecular Biology</subject><subject>Diphosphates</subject><subject>Hypoxanthines</subject><subject>Isotopes</subject><subject>Kinetics</subject><subject>Oxygen</subject><subject>Plasmodium falciparum</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQxq0K1JbCC_SAIk5cdvF_xxckVEFbqYgeisTNmjhO4yqxUztB7I134A15Egy7LOXSk0czv_k8Mx9CpwSvCabkDdhsezc2Pq6pxVhweYCOiRB8VWumnuxjqo_Qs5zvMOZM1voQHTHJCdNKHKPxMvS-8bOPoYLQVh-d7SH4PFaxq64HyGNs_TJWHQzWT5BKeLGZ4jcIc--D-_n9x_lS-D_Rl12yuu5jnvqYfBPzZpgThNy5BNk9R0-LUHYvdu8J-vzh_c3Zxerq0_nl2burFXBZzytNQNZEdFoqqjsLAEIK1QgnbENxK3ApccEJ1W0jmJQlzwvUtrKs6LBmJ-jtVndamtG11oUyxGCm5EdIGxPBm_8rwffmNn41WilKMC4Cr7YCMc_eZOvnchcbQ3B2NpRTxlVdoNe7X1K8X1yezeizdcMAwcUlG6qY5owKrgpKt6hNMefkuv0sBJvfZpp_ZpqdmaXp5cMt9i1_3SvAeguUZnMXlxTKUR9T_AVXNLLe</recordid><startdate>20221216</startdate><enddate>20221216</enddate><creator>V. T. Minnow, Yacoba</creator><creator>Suthagar, Kajitha</creator><creator>Clinch, Keith</creator><creator>Ducati, Rodrigo G.</creator><creator>Ghosh, Agnidipta</creator><creator>Buckler, Joshua N.</creator><creator>Harijan, Rajesh K.</creator><creator>Cahill, Sean M.</creator><creator>Tyler, Peter C.</creator><creator>Schramm, Vern L.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4397-9947</orcidid><orcidid>https://orcid.org/0000-0002-8783-8847</orcidid><orcidid>https://orcid.org/0000-0002-3151-6208</orcidid><orcidid>https://orcid.org/0000-0002-8056-1929</orcidid><orcidid>https://orcid.org/0000-0003-2877-0704</orcidid><orcidid>https://orcid.org/0000000280561929</orcidid><orcidid>https://orcid.org/0000000328770704</orcidid><orcidid>https://orcid.org/0000000287838847</orcidid><orcidid>https://orcid.org/0000000231516208</orcidid><orcidid>https://orcid.org/0000000243979947</orcidid></search><sort><creationdate>20221216</creationdate><title>Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase</title><author>V. T. Minnow, Yacoba ; Suthagar, Kajitha ; Clinch, Keith ; Ducati, Rodrigo G. ; Ghosh, Agnidipta ; Buckler, Joshua N. ; Harijan, Rajesh K. ; Cahill, Sean M. ; Tyler, Peter C. ; Schramm, Vern L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-91a6815f96729fcaaa5657b5e5cb20d505f9454129db5366e5c4aaadd6004e093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry &amp; Molecular Biology</topic><topic>Diphosphates</topic><topic>Hypoxanthines</topic><topic>Isotopes</topic><topic>Kinetics</topic><topic>Oxygen</topic><topic>Plasmodium falciparum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V. T. Minnow, Yacoba</creatorcontrib><creatorcontrib>Suthagar, Kajitha</creatorcontrib><creatorcontrib>Clinch, Keith</creatorcontrib><creatorcontrib>Ducati, Rodrigo G.</creatorcontrib><creatorcontrib>Ghosh, Agnidipta</creatorcontrib><creatorcontrib>Buckler, Joshua N.</creatorcontrib><creatorcontrib>Harijan, Rajesh K.</creatorcontrib><creatorcontrib>Cahill, Sean M.</creatorcontrib><creatorcontrib>Tyler, Peter C.</creatorcontrib><creatorcontrib>Schramm, Vern L.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V. T. Minnow, Yacoba</au><au>Suthagar, Kajitha</au><au>Clinch, Keith</au><au>Ducati, Rodrigo G.</au><au>Ghosh, Agnidipta</au><au>Buckler, Joshua N.</au><au>Harijan, Rajesh K.</au><au>Cahill, Sean M.</au><au>Tyler, Peter C.</au><au>Schramm, Vern L.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2022-12-16</date><risdate>2022</risdate><volume>17</volume><issue>12</issue><spage>3407</spage><epage>3419</epage><pages>3407-3419</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Plasmodium falciparum hypoxanthine–guanine–xanthine phosphoribosyltransferase (PfHGXPRT) is essential for purine salvage of hypoxanthine into parasite purine nucleotides. Transition state analogue inhibitors of PfHGXPRT are characterized by kinetic analysis, thermodynamic parameters, and X-ray crystal structures. Compound 1, 9-deazaguanine linked to an acyclic ribocation phosphonate mimic, shows a kinetic K i of 0.5 nM. Isothermal titration calorimetry (ITC) experiments of 1 binding to PfHGXPRT reveal enthalpically driven binding with negative cooperativity for the binding of two inhibitor molecules in the tetrameric enzyme. Crystal structures of 1 bound to PfHGXPRT define the hydrogen bond and ionic contacts to complement binding thermodynamics. Dynamics of ribosyl transfer from 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) to hypoxanthine were examined by 18O isotope exchange at the bridging phosphoryl oxygen of PRPP pyrophosphate. Rotational constraints or short transition state lifetimes prevent torsional rotation and positional isotope exchange of bridging to nonbridging oxygen in the α-pyrophosphoryl group. Thermodynamic analysis of the transition state analogue and magnesium pyrophosphate binding reveal random and cooperative binding to PfHGXPRT, unlike the obligatory ordered reaction kinetics reported earlier for substrate kinetics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36413975</pmid><doi>10.1021/acschembio.2c00546</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4397-9947</orcidid><orcidid>https://orcid.org/0000-0002-8783-8847</orcidid><orcidid>https://orcid.org/0000-0002-3151-6208</orcidid><orcidid>https://orcid.org/0000-0002-8056-1929</orcidid><orcidid>https://orcid.org/0000-0003-2877-0704</orcidid><orcidid>https://orcid.org/0000000280561929</orcidid><orcidid>https://orcid.org/0000000328770704</orcidid><orcidid>https://orcid.org/0000000287838847</orcidid><orcidid>https://orcid.org/0000000231516208</orcidid><orcidid>https://orcid.org/0000000243979947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2022-12, Vol.17 (12), p.3407-3419
issn 1554-8929
1554-8937
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9772100
source MEDLINE; American Chemical Society Journals
subjects Biochemistry & Molecular Biology
Diphosphates
Hypoxanthines
Isotopes
Kinetics
Oxygen
Plasmodium falciparum
title Inhibition and Mechanism of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine Phosphoribosyltransferase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20and%20Mechanism%20of%20Plasmodium%20falciparum%20Hypoxanthine%E2%80%93Guanine%E2%80%93Xanthine%20Phosphoribosyltransferase&rft.jtitle=ACS%20chemical%20biology&rft.au=V.%20T.%20Minnow,%20Yacoba&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2022-12-16&rft.volume=17&rft.issue=12&rft.spage=3407&rft.epage=3419&rft.pages=3407-3419&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.2c00546&rft_dat=%3Cproquest_pubme%3E2739432547%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739432547&rft_id=info:pmid/36413975&rfr_iscdi=true