Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials

The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase sepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Patterns (New York, N.Y.) N.Y.), 2022-12, Vol.3 (12), p.100634-100634, Article 100634
Hauptverfasser: Santos, David A., Andrews, Justin L., Lin, Binbin, De Jesus, Luis R., Luo, Yuting, Pas, Savannah, Gross, Michelle A., Carillo, Luis, Stein, Peter, Ding, Yu, Xu, Bai-Xiang, Banerjee, Sarbajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100634
container_issue 12
container_start_page 100634
container_title Patterns (New York, N.Y.)
container_volume 3
creator Santos, David A.
Andrews, Justin L.
Lin, Binbin
De Jesus, Luis R.
Luo, Yuting
Pas, Savannah
Gross, Michelle A.
Carillo, Luis
Stein, Peter
Ding, Yu
Xu, Bai-Xiang
Banerjee, Sarbajit
description The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging. [Display omitted] •Phase inhomogeneities and stress gradients govern electrode performance in batteries•Hyperspectral imaging allows for the mapping of compositional variations•Spectral databases are critical to investigating compositional heterogeneities•Chemistry-geometry-mechanics coupling is crucial to lithiation phenomena In battery electrode materials, phase inhomogeneities and stress gradients substantially influence battery performance and longevity. In this work, multivariate hyperspectral X-ray spectromicroscopy measurements are coupled with data dimensionality reduction and clustering techniques in conjunction with a spectral database and finite element analysis to probe compositional, phase, and strain heterogeneities in a canonical electrode material. The resulting maps are based on physically interpretable spectral standards and allow a detailed view of Li-intercalation-induced changes in the crystal lattice and electronic structure across decades of length scales. Direct observation of these changes across length scales provides a foundational understanding of lithiation processes and informs the design of next-generation electrode materials. In battery electrode materials, compositional heterogeneities give rise to stress gradients that ultimately
doi_str_mv 10.1016/j.patter.2022.100634
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9768684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666389922002665</els_id><sourcerecordid>2758357390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-e5f756799b9d9f10f72d5ce714575318e2c78e07337f823b592676c5c1cea7733</originalsourceid><addsrcrecordid>eNp9UUtvEzEQXiEQrUr_AUI-cmiCH2t7fUFCFS-piAucLcc7m3XkXS-2Eym_gr_MhJRSLpzGGs_3mPma5iWja0aZerNbL65WyGtOOccWVaJ90lxypdRKdMY8ffS-aK5L2VFKuWTMKPa8uRBKKiNbcdn8_LKPNRxcDq4CGY8L5LKAr9lF0rvqiJtdPNbgC3E-p1JIhHlbR1K8i1BITWTJaQPEp2lJJdSQEHBDltEVuEF0TwqShZmMgH7TFmbAIURiC-JJKfVAJlRHC7G8aJ4NWOD6vl413z-8_3b7aXX39ePn23d3K98qUVcgBy2VNmZjejMwOmjeSw-atVJLwTrgXndAtRB66LjYSMOVVl565sFpbF81b8-8y34zQe9hPq1slxwml482uWD__ZnDaLfpYI1WnepaJHh9T5DTjz2UaqdQPMToZkj7YrmWnZBaGIqj7Xn09wEzDA8yjNpTnHZnz3HaU5z2HCfCXj22-AD6E97fHQAPdQgILz7A7KEPGQ9r-xT-r_AL7xe3ZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758357390</pqid></control><display><type>article</type><title>Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials</title><source>TestCollectionTL3OpenAccess</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Santos, David A. ; Andrews, Justin L. ; Lin, Binbin ; De Jesus, Luis R. ; Luo, Yuting ; Pas, Savannah ; Gross, Michelle A. ; Carillo, Luis ; Stein, Peter ; Ding, Yu ; Xu, Bai-Xiang ; Banerjee, Sarbajit</creator><creatorcontrib>Santos, David A. ; Andrews, Justin L. ; Lin, Binbin ; De Jesus, Luis R. ; Luo, Yuting ; Pas, Savannah ; Gross, Michelle A. ; Carillo, Luis ; Stein, Peter ; Ding, Yu ; Xu, Bai-Xiang ; Banerjee, Sarbajit</creatorcontrib><description>The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging. [Display omitted] •Phase inhomogeneities and stress gradients govern electrode performance in batteries•Hyperspectral imaging allows for the mapping of compositional variations•Spectral databases are critical to investigating compositional heterogeneities•Chemistry-geometry-mechanics coupling is crucial to lithiation phenomena In battery electrode materials, phase inhomogeneities and stress gradients substantially influence battery performance and longevity. In this work, multivariate hyperspectral X-ray spectromicroscopy measurements are coupled with data dimensionality reduction and clustering techniques in conjunction with a spectral database and finite element analysis to probe compositional, phase, and strain heterogeneities in a canonical electrode material. The resulting maps are based on physically interpretable spectral standards and allow a detailed view of Li-intercalation-induced changes in the crystal lattice and electronic structure across decades of length scales. Direct observation of these changes across length scales provides a foundational understanding of lithiation processes and informs the design of next-generation electrode materials. In battery electrode materials, compositional heterogeneities give rise to stress gradients that ultimately result in degenerative failure. Progress in hyperspectral imaging has enabled an unparalleled view of multiphysics processes. Data science methods hold promise for deciphering mechanistic understanding from high-dimensional data. In this work, the utility of X-ray spectromicroscopy coupled with multivariate data analytics is demonstrated through multi-scale investigation of intercalation phenomena in a canonical cathode material aided by curation of a spectral standards database.</description><identifier>ISSN: 2666-3899</identifier><identifier>EISSN: 2666-3899</identifier><identifier>DOI: 10.1016/j.patter.2022.100634</identifier><identifier>PMID: 36569543</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>battery materials ; cathodes ; chemo-mechanics ; hyperspectral imaging ; image analytics ; multivariate data analytics ; singular value decomposition ; vanadium oxide</subject><ispartof>Patterns (New York, N.Y.), 2022-12, Vol.3 (12), p.100634-100634, Article 100634</ispartof><rights>2022 The Author(s)</rights><rights>2022 The Author(s).</rights><rights>2022 The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-e5f756799b9d9f10f72d5ce714575318e2c78e07337f823b592676c5c1cea7733</citedby><cites>FETCH-LOGICAL-c463t-e5f756799b9d9f10f72d5ce714575318e2c78e07337f823b592676c5c1cea7733</cites><orcidid>0000-0002-2028-4675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768684/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768684/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36569543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, David A.</creatorcontrib><creatorcontrib>Andrews, Justin L.</creatorcontrib><creatorcontrib>Lin, Binbin</creatorcontrib><creatorcontrib>De Jesus, Luis R.</creatorcontrib><creatorcontrib>Luo, Yuting</creatorcontrib><creatorcontrib>Pas, Savannah</creatorcontrib><creatorcontrib>Gross, Michelle A.</creatorcontrib><creatorcontrib>Carillo, Luis</creatorcontrib><creatorcontrib>Stein, Peter</creatorcontrib><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Xu, Bai-Xiang</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><title>Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials</title><title>Patterns (New York, N.Y.)</title><addtitle>Patterns (N Y)</addtitle><description>The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging. [Display omitted] •Phase inhomogeneities and stress gradients govern electrode performance in batteries•Hyperspectral imaging allows for the mapping of compositional variations•Spectral databases are critical to investigating compositional heterogeneities•Chemistry-geometry-mechanics coupling is crucial to lithiation phenomena In battery electrode materials, phase inhomogeneities and stress gradients substantially influence battery performance and longevity. In this work, multivariate hyperspectral X-ray spectromicroscopy measurements are coupled with data dimensionality reduction and clustering techniques in conjunction with a spectral database and finite element analysis to probe compositional, phase, and strain heterogeneities in a canonical electrode material. The resulting maps are based on physically interpretable spectral standards and allow a detailed view of Li-intercalation-induced changes in the crystal lattice and electronic structure across decades of length scales. Direct observation of these changes across length scales provides a foundational understanding of lithiation processes and informs the design of next-generation electrode materials. In battery electrode materials, compositional heterogeneities give rise to stress gradients that ultimately result in degenerative failure. Progress in hyperspectral imaging has enabled an unparalleled view of multiphysics processes. Data science methods hold promise for deciphering mechanistic understanding from high-dimensional data. In this work, the utility of X-ray spectromicroscopy coupled with multivariate data analytics is demonstrated through multi-scale investigation of intercalation phenomena in a canonical cathode material aided by curation of a spectral standards database.</description><subject>battery materials</subject><subject>cathodes</subject><subject>chemo-mechanics</subject><subject>hyperspectral imaging</subject><subject>image analytics</subject><subject>multivariate data analytics</subject><subject>singular value decomposition</subject><subject>vanadium oxide</subject><issn>2666-3899</issn><issn>2666-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UUtvEzEQXiEQrUr_AUI-cmiCH2t7fUFCFS-piAucLcc7m3XkXS-2Eym_gr_MhJRSLpzGGs_3mPma5iWja0aZerNbL65WyGtOOccWVaJ90lxypdRKdMY8ffS-aK5L2VFKuWTMKPa8uRBKKiNbcdn8_LKPNRxcDq4CGY8L5LKAr9lF0rvqiJtdPNbgC3E-p1JIhHlbR1K8i1BITWTJaQPEp2lJJdSQEHBDltEVuEF0TwqShZmMgH7TFmbAIURiC-JJKfVAJlRHC7G8aJ4NWOD6vl413z-8_3b7aXX39ePn23d3K98qUVcgBy2VNmZjejMwOmjeSw-atVJLwTrgXndAtRB66LjYSMOVVl565sFpbF81b8-8y34zQe9hPq1slxwml482uWD__ZnDaLfpYI1WnepaJHh9T5DTjz2UaqdQPMToZkj7YrmWnZBaGIqj7Xn09wEzDA8yjNpTnHZnz3HaU5z2HCfCXj22-AD6E97fHQAPdQgILz7A7KEPGQ9r-xT-r_AL7xe3ZQ</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Santos, David A.</creator><creator>Andrews, Justin L.</creator><creator>Lin, Binbin</creator><creator>De Jesus, Luis R.</creator><creator>Luo, Yuting</creator><creator>Pas, Savannah</creator><creator>Gross, Michelle A.</creator><creator>Carillo, Luis</creator><creator>Stein, Peter</creator><creator>Ding, Yu</creator><creator>Xu, Bai-Xiang</creator><creator>Banerjee, Sarbajit</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid></search><sort><creationdate>20221209</creationdate><title>Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials</title><author>Santos, David A. ; Andrews, Justin L. ; Lin, Binbin ; De Jesus, Luis R. ; Luo, Yuting ; Pas, Savannah ; Gross, Michelle A. ; Carillo, Luis ; Stein, Peter ; Ding, Yu ; Xu, Bai-Xiang ; Banerjee, Sarbajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-e5f756799b9d9f10f72d5ce714575318e2c78e07337f823b592676c5c1cea7733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>battery materials</topic><topic>cathodes</topic><topic>chemo-mechanics</topic><topic>hyperspectral imaging</topic><topic>image analytics</topic><topic>multivariate data analytics</topic><topic>singular value decomposition</topic><topic>vanadium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, David A.</creatorcontrib><creatorcontrib>Andrews, Justin L.</creatorcontrib><creatorcontrib>Lin, Binbin</creatorcontrib><creatorcontrib>De Jesus, Luis R.</creatorcontrib><creatorcontrib>Luo, Yuting</creatorcontrib><creatorcontrib>Pas, Savannah</creatorcontrib><creatorcontrib>Gross, Michelle A.</creatorcontrib><creatorcontrib>Carillo, Luis</creatorcontrib><creatorcontrib>Stein, Peter</creatorcontrib><creatorcontrib>Ding, Yu</creatorcontrib><creatorcontrib>Xu, Bai-Xiang</creatorcontrib><creatorcontrib>Banerjee, Sarbajit</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Patterns (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, David A.</au><au>Andrews, Justin L.</au><au>Lin, Binbin</au><au>De Jesus, Luis R.</au><au>Luo, Yuting</au><au>Pas, Savannah</au><au>Gross, Michelle A.</au><au>Carillo, Luis</au><au>Stein, Peter</au><au>Ding, Yu</au><au>Xu, Bai-Xiang</au><au>Banerjee, Sarbajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials</atitle><jtitle>Patterns (New York, N.Y.)</jtitle><addtitle>Patterns (N Y)</addtitle><date>2022-12-09</date><risdate>2022</risdate><volume>3</volume><issue>12</issue><spage>100634</spage><epage>100634</epage><pages>100634-100634</pages><artnum>100634</artnum><issn>2666-3899</issn><eissn>2666-3899</eissn><abstract>The origins of performance degradation in batteries can be traced to atomistic phenomena, accumulated at mesoscale dimensions, and compounded up to the level of electrode architectures. Hyperspectral X-ray spectromicroscopy techniques allow for the mapping of compositional variations, and phase separation across length scales with high spatial and energy resolution. We demonstrate the design of workflows combining singular value decomposition, principal-component analysis, k-means clustering, and linear combination fitting, in conjunction with a curated spectral database, to develop high-accuracy quantitative compositional maps of the effective depth of discharge across individual positive electrode particles and ensembles of particles. Using curated reference spectra, accurate and quantitative mapping of inter- and intraparticle compositional heterogeneities, phase separation, and stress gradients is achieved for a canonical phase-transforming positive electrode material, α-V2O5. Phase maps from single-particle measurements are used to reconstruct directional stress profiles showcasing the distinctive insights accessible from a standards-informed application of high-dimensional chemical imaging. [Display omitted] •Phase inhomogeneities and stress gradients govern electrode performance in batteries•Hyperspectral imaging allows for the mapping of compositional variations•Spectral databases are critical to investigating compositional heterogeneities•Chemistry-geometry-mechanics coupling is crucial to lithiation phenomena In battery electrode materials, phase inhomogeneities and stress gradients substantially influence battery performance and longevity. In this work, multivariate hyperspectral X-ray spectromicroscopy measurements are coupled with data dimensionality reduction and clustering techniques in conjunction with a spectral database and finite element analysis to probe compositional, phase, and strain heterogeneities in a canonical electrode material. The resulting maps are based on physically interpretable spectral standards and allow a detailed view of Li-intercalation-induced changes in the crystal lattice and electronic structure across decades of length scales. Direct observation of these changes across length scales provides a foundational understanding of lithiation processes and informs the design of next-generation electrode materials. In battery electrode materials, compositional heterogeneities give rise to stress gradients that ultimately result in degenerative failure. Progress in hyperspectral imaging has enabled an unparalleled view of multiphysics processes. Data science methods hold promise for deciphering mechanistic understanding from high-dimensional data. In this work, the utility of X-ray spectromicroscopy coupled with multivariate data analytics is demonstrated through multi-scale investigation of intercalation phenomena in a canonical cathode material aided by curation of a spectral standards database.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36569543</pmid><doi>10.1016/j.patter.2022.100634</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2028-4675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-3899
ispartof Patterns (New York, N.Y.), 2022-12, Vol.3 (12), p.100634-100634, Article 100634
issn 2666-3899
2666-3899
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9768684
source TestCollectionTL3OpenAccess; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects battery materials
cathodes
chemo-mechanics
hyperspectral imaging
image analytics
multivariate data analytics
singular value decomposition
vanadium oxide
title Multivariate hyperspectral data analytics across length scales to probe compositional, phase, and strain heterogeneities in electrode materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20hyperspectral%20data%20analytics%20across%20length%20scales%20to%20probe%20compositional,%20phase,%20and%20strain%20heterogeneities%20in%20electrode%20materials&rft.jtitle=Patterns%20(New%20York,%20N.Y.)&rft.au=Santos,%20David%20A.&rft.date=2022-12-09&rft.volume=3&rft.issue=12&rft.spage=100634&rft.epage=100634&rft.pages=100634-100634&rft.artnum=100634&rft.issn=2666-3899&rft.eissn=2666-3899&rft_id=info:doi/10.1016/j.patter.2022.100634&rft_dat=%3Cproquest_pubme%3E2758357390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758357390&rft_id=info:pmid/36569543&rft_els_id=S2666389922002665&rfr_iscdi=true