An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual dif...
Gespeichert in:
Veröffentlicht in: | Mammalian genome 2022-12, Vol.33 (4), p.575-589 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 589 |
---|---|
container_issue | 4 |
container_start_page | 575 |
container_title | Mammalian genome |
container_volume | 33 |
creator | Xenakis, James G. Douillet, Christelle Bell, Timothy A. Hock, Pablo Farrington, Joseph Liu, Tianyi Murphy, Caroline E. Y. Saraswatula, Avani Shaw, Ginger D. Nativio, Gustavo Shi, Qing Venkatratnam, Abhishek Zou, Fei Fry, Rebecca C. Stýblo, Miroslav Pardo-Manuel de Villena, Fernando |
description | Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for
β
-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice’s ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains. |
doi_str_mv | 10.1007/s00335-022-09957-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9761582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688569201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2f92c217b5e29e05215b48c7ba27a88c923e5df703af40895572997231ddb9a33</originalsourceid><addsrcrecordid>eNp9kctuHCEQRVEUK544-YEsIqRssumYRzPAJpLlPCVL3jhrRNPVM1jTMAHa4_kA_7eZtOM8Fl4V6J66VHERekPJB0qIPM2EcC4awlhDtBay2T1DC9py1lAp5XO0IJqrRmlNjtHLnK8JoXJJ5Qt0zIWiupVqge7OAvahQLKu-BhwHOo1ppUN3mGbMhwq3G5jnhLgnS9r3MV-j3fgV-uCbeixi2OV_dwecNlvATPce9tBgVzteu9sielwxJ_8DaQK7_HlVLoEPR69g1foaLCbDK8f6gn68eXz1fm35uLy6_fzs4vGtbItDRs0c4zKTgDTQASjomuVk51l0irlNOMg-kESboeWKC2EZFpLxmnfd9pyfoI-zr7bqRuhdxBKshuzTX60aW-i9eZfJfi1WcUbo-vHCcWqwfsHgxR_TpCLGX12sNnYAHHKhi2VEkvNCK3ou__Q6zilUNczrI4lqV7yA8VmyqWYc4LhcRhKzCFlM6dsasrmV8pmV5ve_r3GY8vvWCvAZyBXKawg_Xn7Cdt7QAu12A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729719631</pqid></control><display><type>article</type><title>An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xenakis, James G. ; Douillet, Christelle ; Bell, Timothy A. ; Hock, Pablo ; Farrington, Joseph ; Liu, Tianyi ; Murphy, Caroline E. Y. ; Saraswatula, Avani ; Shaw, Ginger D. ; Nativio, Gustavo ; Shi, Qing ; Venkatratnam, Abhishek ; Zou, Fei ; Fry, Rebecca C. ; Stýblo, Miroslav ; Pardo-Manuel de Villena, Fernando</creator><creatorcontrib>Xenakis, James G. ; Douillet, Christelle ; Bell, Timothy A. ; Hock, Pablo ; Farrington, Joseph ; Liu, Tianyi ; Murphy, Caroline E. Y. ; Saraswatula, Avani ; Shaw, Ginger D. ; Nativio, Gustavo ; Shi, Qing ; Venkatratnam, Abhishek ; Zou, Fei ; Fry, Rebecca C. ; Stýblo, Miroslav ; Pardo-Manuel de Villena, Fernando</creatorcontrib><description>Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for
β
-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice’s ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.</description><identifier>ISSN: 0938-8990</identifier><identifier>ISSN: 1432-1777</identifier><identifier>EISSN: 1432-1777</identifier><identifier>DOI: 10.1007/s00335-022-09957-w</identifier><identifier>PMID: 35819478</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animal Genetics and Genomics ; Animals ; Arsenic ; Arsenic - toxicity ; Arsenicals ; Beta cells ; Biomedical and Life Sciences ; Blood Glucose ; Body composition ; Body Weight ; Cell Biology ; Collaborative Cross Mice ; Contaminants ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - genetics ; Drinking water ; Genetic diversity ; Glucose ; Human Genetics ; Humans ; Insulin ; Insulin resistance ; Insulins ; Life Sciences ; Liver ; Magnetic resonance imaging ; Male ; Metabolic disorders ; Metabolism ; Metabolites ; Mice ; Morbidity ; Population genetics</subject><ispartof>Mammalian genome, 2022-12, Vol.33 (4), p.575-589</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2f92c217b5e29e05215b48c7ba27a88c923e5df703af40895572997231ddb9a33</citedby><cites>FETCH-LOGICAL-c474t-2f92c217b5e29e05215b48c7ba27a88c923e5df703af40895572997231ddb9a33</cites><orcidid>0000-0003-0899-9018 ; 0000-0003-4602-9741 ; 0000-0002-9546-6334 ; 0000-0002-9307-9605 ; 0000-0002-5738-5795 ; 0000-0003-2590-4973 ; 0000-0002-6637-3593 ; 0000-0001-6764-1900</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00335-022-09957-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00335-022-09957-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35819478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xenakis, James G.</creatorcontrib><creatorcontrib>Douillet, Christelle</creatorcontrib><creatorcontrib>Bell, Timothy A.</creatorcontrib><creatorcontrib>Hock, Pablo</creatorcontrib><creatorcontrib>Farrington, Joseph</creatorcontrib><creatorcontrib>Liu, Tianyi</creatorcontrib><creatorcontrib>Murphy, Caroline E. Y.</creatorcontrib><creatorcontrib>Saraswatula, Avani</creatorcontrib><creatorcontrib>Shaw, Ginger D.</creatorcontrib><creatorcontrib>Nativio, Gustavo</creatorcontrib><creatorcontrib>Shi, Qing</creatorcontrib><creatorcontrib>Venkatratnam, Abhishek</creatorcontrib><creatorcontrib>Zou, Fei</creatorcontrib><creatorcontrib>Fry, Rebecca C.</creatorcontrib><creatorcontrib>Stýblo, Miroslav</creatorcontrib><creatorcontrib>Pardo-Manuel de Villena, Fernando</creatorcontrib><title>An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice</title><title>Mammalian genome</title><addtitle>Mamm Genome</addtitle><addtitle>Mamm Genome</addtitle><description>Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for
β
-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice’s ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Arsenic</subject><subject>Arsenic - toxicity</subject><subject>Arsenicals</subject><subject>Beta cells</subject><subject>Biomedical and Life Sciences</subject><subject>Blood Glucose</subject><subject>Body composition</subject><subject>Body Weight</subject><subject>Cell Biology</subject><subject>Collaborative Cross Mice</subject><subject>Contaminants</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Drinking water</subject><subject>Genetic diversity</subject><subject>Glucose</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulins</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Morbidity</subject><subject>Population genetics</subject><issn>0938-8990</issn><issn>1432-1777</issn><issn>1432-1777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuHCEQRVEUK544-YEsIqRssumYRzPAJpLlPCVL3jhrRNPVM1jTMAHa4_kA_7eZtOM8Fl4V6J66VHERekPJB0qIPM2EcC4awlhDtBay2T1DC9py1lAp5XO0IJqrRmlNjtHLnK8JoXJJ5Qt0zIWiupVqge7OAvahQLKu-BhwHOo1ppUN3mGbMhwq3G5jnhLgnS9r3MV-j3fgV-uCbeixi2OV_dwecNlvATPce9tBgVzteu9sielwxJ_8DaQK7_HlVLoEPR69g1foaLCbDK8f6gn68eXz1fm35uLy6_fzs4vGtbItDRs0c4zKTgDTQASjomuVk51l0irlNOMg-kESboeWKC2EZFpLxmnfd9pyfoI-zr7bqRuhdxBKshuzTX60aW-i9eZfJfi1WcUbo-vHCcWqwfsHgxR_TpCLGX12sNnYAHHKhi2VEkvNCK3ou__Q6zilUNczrI4lqV7yA8VmyqWYc4LhcRhKzCFlM6dsasrmV8pmV5ve_r3GY8vvWCvAZyBXKawg_Xn7Cdt7QAu12A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xenakis, James G.</creator><creator>Douillet, Christelle</creator><creator>Bell, Timothy A.</creator><creator>Hock, Pablo</creator><creator>Farrington, Joseph</creator><creator>Liu, Tianyi</creator><creator>Murphy, Caroline E. Y.</creator><creator>Saraswatula, Avani</creator><creator>Shaw, Ginger D.</creator><creator>Nativio, Gustavo</creator><creator>Shi, Qing</creator><creator>Venkatratnam, Abhishek</creator><creator>Zou, Fei</creator><creator>Fry, Rebecca C.</creator><creator>Stýblo, Miroslav</creator><creator>Pardo-Manuel de Villena, Fernando</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0899-9018</orcidid><orcidid>https://orcid.org/0000-0003-4602-9741</orcidid><orcidid>https://orcid.org/0000-0002-9546-6334</orcidid><orcidid>https://orcid.org/0000-0002-9307-9605</orcidid><orcidid>https://orcid.org/0000-0002-5738-5795</orcidid><orcidid>https://orcid.org/0000-0003-2590-4973</orcidid><orcidid>https://orcid.org/0000-0002-6637-3593</orcidid><orcidid>https://orcid.org/0000-0001-6764-1900</orcidid></search><sort><creationdate>20221201</creationdate><title>An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice</title><author>Xenakis, James G. ; Douillet, Christelle ; Bell, Timothy A. ; Hock, Pablo ; Farrington, Joseph ; Liu, Tianyi ; Murphy, Caroline E. Y. ; Saraswatula, Avani ; Shaw, Ginger D. ; Nativio, Gustavo ; Shi, Qing ; Venkatratnam, Abhishek ; Zou, Fei ; Fry, Rebecca C. ; Stýblo, Miroslav ; Pardo-Manuel de Villena, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2f92c217b5e29e05215b48c7ba27a88c923e5df703af40895572997231ddb9a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Arsenic</topic><topic>Arsenic - toxicity</topic><topic>Arsenicals</topic><topic>Beta cells</topic><topic>Biomedical and Life Sciences</topic><topic>Blood Glucose</topic><topic>Body composition</topic><topic>Body Weight</topic><topic>Cell Biology</topic><topic>Collaborative Cross Mice</topic><topic>Contaminants</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Drinking water</topic><topic>Genetic diversity</topic><topic>Glucose</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulins</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Morbidity</topic><topic>Population genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xenakis, James G.</creatorcontrib><creatorcontrib>Douillet, Christelle</creatorcontrib><creatorcontrib>Bell, Timothy A.</creatorcontrib><creatorcontrib>Hock, Pablo</creatorcontrib><creatorcontrib>Farrington, Joseph</creatorcontrib><creatorcontrib>Liu, Tianyi</creatorcontrib><creatorcontrib>Murphy, Caroline E. Y.</creatorcontrib><creatorcontrib>Saraswatula, Avani</creatorcontrib><creatorcontrib>Shaw, Ginger D.</creatorcontrib><creatorcontrib>Nativio, Gustavo</creatorcontrib><creatorcontrib>Shi, Qing</creatorcontrib><creatorcontrib>Venkatratnam, Abhishek</creatorcontrib><creatorcontrib>Zou, Fei</creatorcontrib><creatorcontrib>Fry, Rebecca C.</creatorcontrib><creatorcontrib>Stýblo, Miroslav</creatorcontrib><creatorcontrib>Pardo-Manuel de Villena, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mammalian genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xenakis, James G.</au><au>Douillet, Christelle</au><au>Bell, Timothy A.</au><au>Hock, Pablo</au><au>Farrington, Joseph</au><au>Liu, Tianyi</au><au>Murphy, Caroline E. Y.</au><au>Saraswatula, Avani</au><au>Shaw, Ginger D.</au><au>Nativio, Gustavo</au><au>Shi, Qing</au><au>Venkatratnam, Abhishek</au><au>Zou, Fei</au><au>Fry, Rebecca C.</au><au>Stýblo, Miroslav</au><au>Pardo-Manuel de Villena, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice</atitle><jtitle>Mammalian genome</jtitle><stitle>Mamm Genome</stitle><addtitle>Mamm Genome</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>4</issue><spage>575</spage><epage>589</epage><pages>575-589</pages><issn>0938-8990</issn><issn>1432-1777</issn><eissn>1432-1777</eissn><abstract>Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for
β
-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice’s ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35819478</pmid><doi>10.1007/s00335-022-09957-w</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0899-9018</orcidid><orcidid>https://orcid.org/0000-0003-4602-9741</orcidid><orcidid>https://orcid.org/0000-0002-9546-6334</orcidid><orcidid>https://orcid.org/0000-0002-9307-9605</orcidid><orcidid>https://orcid.org/0000-0002-5738-5795</orcidid><orcidid>https://orcid.org/0000-0003-2590-4973</orcidid><orcidid>https://orcid.org/0000-0002-6637-3593</orcidid><orcidid>https://orcid.org/0000-0001-6764-1900</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8990 |
ispartof | Mammalian genome, 2022-12, Vol.33 (4), p.575-589 |
issn | 0938-8990 1432-1777 1432-1777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9761582 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animal Genetics and Genomics Animals Arsenic Arsenic - toxicity Arsenicals Beta cells Biomedical and Life Sciences Blood Glucose Body composition Body Weight Cell Biology Collaborative Cross Mice Contaminants Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - genetics Drinking water Genetic diversity Glucose Human Genetics Humans Insulin Insulin resistance Insulins Life Sciences Liver Magnetic resonance imaging Male Metabolic disorders Metabolism Metabolites Mice Morbidity Population genetics |
title | An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interaction%20of%20inorganic%20arsenic%20exposure%20with%20body%20weight%20and%20composition%20on%20type%202%20diabetes%20indicators%20in%20Diversity%20Outbred%20mice&rft.jtitle=Mammalian%20genome&rft.au=Xenakis,%20James%20G.&rft.date=2022-12-01&rft.volume=33&rft.issue=4&rft.spage=575&rft.epage=589&rft.pages=575-589&rft.issn=0938-8990&rft.eissn=1432-1777&rft_id=info:doi/10.1007/s00335-022-09957-w&rft_dat=%3Cproquest_pubme%3E2688569201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729719631&rft_id=info:pmid/35819478&rfr_iscdi=true |