LaGAT: link-aware graph attention network for drug-drug interaction prediction
Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large know...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2022-12, Vol.38 (24), p.5406-5412 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5412 |
---|---|
container_issue | 24 |
container_start_page | 5406 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 38 |
creator | Hong, Yue Luo, Pengyu Jin, Shuting Liu, Xiangrong |
description | Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large knowledge graphs inevitably suffer from data noise problems, which limit the performance and interpretability of models based on the knowledge graph. Recent studies attempt to improve models by introducing inductive bias through an attention mechanism. However, they all only depend on the topology of entity nodes independently to generate fixed attention pathways, without considering the semantic diversity of entity nodes in different drug pair links. This makes it difficult for models to select more meaningful nodes to overcome data quality limitations and make more interpretable predictions.
To address this issue, we propose a Link-aware Graph Attention method for DDI prediction, called LaGAT, which is able to generate different attention pathways for drug entities based on different drug pair links. For a drug pair link, the LaGAT uses the embedding representation of one of the drugs as a query vector to calculate the attention weights, thereby selecting the appropriate topological neighbor nodes to obtain the semantic information of the other drug. We separately conduct experiments on binary and multi-class classification and visualize the attention pathways generated by the model. The results prove that LaGAT can better capture semantic relationships and achieves remarkably superior performance over both the classical and state-of-the-art models on DDI prediction.
The source code and data are available at https://github.com/Azra3lzz/LaGAT.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9750103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2727641561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-43b8e661f0a13adfe5d9a5fb16ba39fb365b0c3636247a65ca5876f4904d68d83</originalsourceid><addsrcrecordid>eNpVUctOwzAQtBCIlsIvVDlyCbXj2Ek4IFUIClIFl3K2No7TmiZxsB0q_p70QUUvuyvt7MxoB6ExwXcEZ3SSa6Ob0tgavJZuknuQPI3O0JBQnoRxSsj5ccZ0gK6c-8QYM8z4JRpQHiUkZXiI3uYwmy7ug0o36xA2YFWwtNCuAvBeNV6bJmiU3xi7Dnq1oLDdMtyWQDdeWZA7RGtVoXfjNboooXLq5tBH6OP5afH4Es7fZ6-P03koYxL7MKZ5qjgnJQZCoSgVKzJgZU54DjQrc8pZjiXlvc84Ac4ksDThZZzhuOBpkdIRetjztl1eq0L2Vi1UorW6BvsjDGhxumn0SizNt8gShgmmPcHtgcCar045L2rtpKoqaJTpnIiSKOExYZz0UL6HSmucs6o8yhAstmGI0zDEIYz-cPzf5PHs7_v0FxkOjcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727641561</pqid></control><display><type>article</type><title>LaGAT: link-aware graph attention network for drug-drug interaction prediction</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hong, Yue ; Luo, Pengyu ; Jin, Shuting ; Liu, Xiangrong</creator><contributor>Wren, Jonathan</contributor><creatorcontrib>Hong, Yue ; Luo, Pengyu ; Jin, Shuting ; Liu, Xiangrong ; Wren, Jonathan</creatorcontrib><description>Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large knowledge graphs inevitably suffer from data noise problems, which limit the performance and interpretability of models based on the knowledge graph. Recent studies attempt to improve models by introducing inductive bias through an attention mechanism. However, they all only depend on the topology of entity nodes independently to generate fixed attention pathways, without considering the semantic diversity of entity nodes in different drug pair links. This makes it difficult for models to select more meaningful nodes to overcome data quality limitations and make more interpretable predictions.
To address this issue, we propose a Link-aware Graph Attention method for DDI prediction, called LaGAT, which is able to generate different attention pathways for drug entities based on different drug pair links. For a drug pair link, the LaGAT uses the embedding representation of one of the drugs as a query vector to calculate the attention weights, thereby selecting the appropriate topological neighbor nodes to obtain the semantic information of the other drug. We separately conduct experiments on binary and multi-class classification and visualize the attention pathways generated by the model. The results prove that LaGAT can better capture semantic relationships and achieves remarkably superior performance over both the classical and state-of-the-art models on DDI prediction.
The source code and data are available at https://github.com/Azra3lzz/LaGAT.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac682</identifier><identifier>PMID: 36271850</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Data Accuracy ; Databases, Factual ; Drug Interactions ; Original Paper ; Semantics ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2022-12, Vol.38 (24), p.5406-5412</ispartof><rights>The Author(s) 2022. Published by Oxford University Press.</rights><rights>The Author(s) 2022. Published by Oxford University Press. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-43b8e661f0a13adfe5d9a5fb16ba39fb365b0c3636247a65ca5876f4904d68d83</citedby><cites>FETCH-LOGICAL-c414t-43b8e661f0a13adfe5d9a5fb16ba39fb365b0c3636247a65ca5876f4904d68d83</cites><orcidid>0000-0002-6601-278X ; 0000-0002-8113-9367 ; 0000-0001-9885-1978 ; 0000-0002-2300-6355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750103/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750103/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36271850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wren, Jonathan</contributor><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Luo, Pengyu</creatorcontrib><creatorcontrib>Jin, Shuting</creatorcontrib><creatorcontrib>Liu, Xiangrong</creatorcontrib><title>LaGAT: link-aware graph attention network for drug-drug interaction prediction</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large knowledge graphs inevitably suffer from data noise problems, which limit the performance and interpretability of models based on the knowledge graph. Recent studies attempt to improve models by introducing inductive bias through an attention mechanism. However, they all only depend on the topology of entity nodes independently to generate fixed attention pathways, without considering the semantic diversity of entity nodes in different drug pair links. This makes it difficult for models to select more meaningful nodes to overcome data quality limitations and make more interpretable predictions.
To address this issue, we propose a Link-aware Graph Attention method for DDI prediction, called LaGAT, which is able to generate different attention pathways for drug entities based on different drug pair links. For a drug pair link, the LaGAT uses the embedding representation of one of the drugs as a query vector to calculate the attention weights, thereby selecting the appropriate topological neighbor nodes to obtain the semantic information of the other drug. We separately conduct experiments on binary and multi-class classification and visualize the attention pathways generated by the model. The results prove that LaGAT can better capture semantic relationships and achieves remarkably superior performance over both the classical and state-of-the-art models on DDI prediction.
The source code and data are available at https://github.com/Azra3lzz/LaGAT.
Supplementary data are available at Bioinformatics online.</description><subject>Data Accuracy</subject><subject>Databases, Factual</subject><subject>Drug Interactions</subject><subject>Original Paper</subject><subject>Semantics</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctOwzAQtBCIlsIvVDlyCbXj2Ek4IFUIClIFl3K2No7TmiZxsB0q_p70QUUvuyvt7MxoB6ExwXcEZ3SSa6Ob0tgavJZuknuQPI3O0JBQnoRxSsj5ccZ0gK6c-8QYM8z4JRpQHiUkZXiI3uYwmy7ug0o36xA2YFWwtNCuAvBeNV6bJmiU3xi7Dnq1oLDdMtyWQDdeWZA7RGtVoXfjNboooXLq5tBH6OP5afH4Es7fZ6-P03koYxL7MKZ5qjgnJQZCoSgVKzJgZU54DjQrc8pZjiXlvc84Ac4ksDThZZzhuOBpkdIRetjztl1eq0L2Vi1UorW6BvsjDGhxumn0SizNt8gShgmmPcHtgcCar045L2rtpKoqaJTpnIiSKOExYZz0UL6HSmucs6o8yhAstmGI0zDEIYz-cPzf5PHs7_v0FxkOjcw</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Hong, Yue</creator><creator>Luo, Pengyu</creator><creator>Jin, Shuting</creator><creator>Liu, Xiangrong</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6601-278X</orcidid><orcidid>https://orcid.org/0000-0002-8113-9367</orcidid><orcidid>https://orcid.org/0000-0001-9885-1978</orcidid><orcidid>https://orcid.org/0000-0002-2300-6355</orcidid></search><sort><creationdate>20221213</creationdate><title>LaGAT: link-aware graph attention network for drug-drug interaction prediction</title><author>Hong, Yue ; Luo, Pengyu ; Jin, Shuting ; Liu, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-43b8e661f0a13adfe5d9a5fb16ba39fb365b0c3636247a65ca5876f4904d68d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data Accuracy</topic><topic>Databases, Factual</topic><topic>Drug Interactions</topic><topic>Original Paper</topic><topic>Semantics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yue</creatorcontrib><creatorcontrib>Luo, Pengyu</creatorcontrib><creatorcontrib>Jin, Shuting</creatorcontrib><creatorcontrib>Liu, Xiangrong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yue</au><au>Luo, Pengyu</au><au>Jin, Shuting</au><au>Liu, Xiangrong</au><au>Wren, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LaGAT: link-aware graph attention network for drug-drug interaction prediction</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>38</volume><issue>24</issue><spage>5406</spage><epage>5412</epage><pages>5406-5412</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Drug-drug interaction (DDI) prediction is a challenging problem in pharmacology and clinical applications. With the increasing availability of large biomedical databases, large-scale biological knowledge graphs containing drug information have been widely used for DDI prediction. However, large knowledge graphs inevitably suffer from data noise problems, which limit the performance and interpretability of models based on the knowledge graph. Recent studies attempt to improve models by introducing inductive bias through an attention mechanism. However, they all only depend on the topology of entity nodes independently to generate fixed attention pathways, without considering the semantic diversity of entity nodes in different drug pair links. This makes it difficult for models to select more meaningful nodes to overcome data quality limitations and make more interpretable predictions.
To address this issue, we propose a Link-aware Graph Attention method for DDI prediction, called LaGAT, which is able to generate different attention pathways for drug entities based on different drug pair links. For a drug pair link, the LaGAT uses the embedding representation of one of the drugs as a query vector to calculate the attention weights, thereby selecting the appropriate topological neighbor nodes to obtain the semantic information of the other drug. We separately conduct experiments on binary and multi-class classification and visualize the attention pathways generated by the model. The results prove that LaGAT can better capture semantic relationships and achieves remarkably superior performance over both the classical and state-of-the-art models on DDI prediction.
The source code and data are available at https://github.com/Azra3lzz/LaGAT.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36271850</pmid><doi>10.1093/bioinformatics/btac682</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6601-278X</orcidid><orcidid>https://orcid.org/0000-0002-8113-9367</orcidid><orcidid>https://orcid.org/0000-0001-9885-1978</orcidid><orcidid>https://orcid.org/0000-0002-2300-6355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2022-12, Vol.38 (24), p.5406-5412 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9750103 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Data Accuracy Databases, Factual Drug Interactions Original Paper Semantics Software |
title | LaGAT: link-aware graph attention network for drug-drug interaction prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LaGAT:%20link-aware%20graph%20attention%20network%20for%20drug-drug%20interaction%20prediction&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Hong,%20Yue&rft.date=2022-12-13&rft.volume=38&rft.issue=24&rft.spage=5406&rft.epage=5412&rft.pages=5406-5412&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btac682&rft_dat=%3Cproquest_pubme%3E2727641561%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727641561&rft_id=info:pmid/36271850&rfr_iscdi=true |