Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide
The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed ) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinc...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2022-12, Vol.88 (23), p.e0150422-e0150422 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0150422 |
---|---|
container_issue | 23 |
container_start_page | e0150422 |
container_title | Applied and environmental microbiology |
container_volume | 88 |
creator | Lavelle, Katherine Sadovskaya, Irina Vinogradov, Evgeny Kelleher, Philip Lugli, Gabriele A Ventura, Marco van Sinderen, Douwe Mahony, Jennifer |
description | The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed
) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct
genotypes identified (designated
through -
). In the present study, two additional genotypes were identified (designated
and
) through comparative analysis of the
loci of 78 Streptococcus thermophilus genomes. The
locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the
,
, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite
locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone.
Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus
loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus
loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets. |
doi_str_mv | 10.1128/aem.01504-22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9746298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754550299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a480t-3de09949f9a55b3bd83d03b82533ca06f74bf9f4ad4a1687a180aec7ebf098653</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhgdR7Fq981oC3ig4NV_zkZtCO1VbWFCs4mXIZM7spM4kY5Jd2L_TX9qsW1steJOQc568OXl5s-wlwUeE0Pq9gukIkwLznNJH2YJgUecFY-XjbIGxEKnK8UH2LIQrjDHHZf00O2AlKzBh1SK7PjWz8tFEQH41o6XT64DOzAZ8MHGLjEWX0cMcnXZ614oD-MnNgxnToXHeQ5id7VLDoVOlf7bOAlK2Q5emA9QMKimcmb4HD1ZDQK5HFzGgr4OarAuQN87GxBi7Qg2MI_qh0vLFjdugtB6UTyrPsye9GgO8uN0Ps-8fP3xrzvPl508XzckyV7zGMWcdpO9y0QtVFC1ru5p1mLU1TWZohcu-4m0veq46rkhZV4rUWIGuoO2TZWXBDrPjve68bifoNNjo1Shnbyblt9IpI__tWDPIldtIUfGSijoJvN0LDA-unZ8s5a6W7OeixHhDEvvm9jHvfq0hRDmZoJMDyoJbB0krxktCq1Ik9PUD9MqtvU1WJKrgRYGp2FHv9pT2LgQP_d0EBMtdUGQKivwdFEnp_awqTPRe8D_sq7-NuRP-kyJ2AwwsyOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754550299</pqid></control><display><type>article</type><title>Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lavelle, Katherine ; Sadovskaya, Irina ; Vinogradov, Evgeny ; Kelleher, Philip ; Lugli, Gabriele A ; Ventura, Marco ; van Sinderen, Douwe ; Mahony, Jennifer</creator><contributor>Ercolini, Danilo</contributor><creatorcontrib>Lavelle, Katherine ; Sadovskaya, Irina ; Vinogradov, Evgeny ; Kelleher, Philip ; Lugli, Gabriele A ; Ventura, Marco ; van Sinderen, Douwe ; Mahony, Jennifer ; Ercolini, Danilo</creatorcontrib><description>The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed
) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct
genotypes identified (designated
through -
). In the present study, two additional genotypes were identified (designated
and
) through comparative analysis of the
loci of 78 Streptococcus thermophilus genomes. The
locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the
,
, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite
locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone.
Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus
loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus
loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.01504-22</identifier><identifier>PMID: 36350137</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Biosynthesis ; Cell Wall ; Cell walls ; Chains ; Comparative analysis ; Food Microbiology ; Genetic diversity ; Genetics and Molecular Biology ; Genomes ; Genotypes ; Life Sciences ; Phages ; Polysaccharides ; Rhamnose ; Spotlight Selection ; Strains (organisms) ; Streptococcus thermophilus ; Streptococcus thermophilus - genetics ; Yogurt</subject><ispartof>Applied and environmental microbiology, 2022-12, Vol.88 (23), p.e0150422-e0150422</ispartof><rights>Copyright © 2022 Lavelle et al.</rights><rights>Copyright American Society for Microbiology Dec 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2022 Lavelle et al. 2022 Lavelle et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a480t-3de09949f9a55b3bd83d03b82533ca06f74bf9f4ad4a1687a180aec7ebf098653</citedby><cites>FETCH-LOGICAL-a480t-3de09949f9a55b3bd83d03b82533ca06f74bf9f4ad4a1687a180aec7ebf098653</cites><orcidid>0000-0002-4875-4560 ; 0000-0003-1823-7957 ; 0000-0002-9189-2002 ; 0000-0002-7574-3824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/aem.01504-22$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/aem.01504-22$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3189,27929,27930,52756,52757,52758,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36350137$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ulco.hal.science/hal-04049600$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Ercolini, Danilo</contributor><creatorcontrib>Lavelle, Katherine</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Vinogradov, Evgeny</creatorcontrib><creatorcontrib>Kelleher, Philip</creatorcontrib><creatorcontrib>Lugli, Gabriele A</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><title>Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><addtitle>Appl Environ Microbiol</addtitle><description>The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed
) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct
genotypes identified (designated
through -
). In the present study, two additional genotypes were identified (designated
and
) through comparative analysis of the
loci of 78 Streptococcus thermophilus genomes. The
locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the
,
, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite
locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone.
Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus
loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus
loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.</description><subject>Biosynthesis</subject><subject>Cell Wall</subject><subject>Cell walls</subject><subject>Chains</subject><subject>Comparative analysis</subject><subject>Food Microbiology</subject><subject>Genetic diversity</subject><subject>Genetics and Molecular Biology</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Life Sciences</subject><subject>Phages</subject><subject>Polysaccharides</subject><subject>Rhamnose</subject><subject>Spotlight Selection</subject><subject>Strains (organisms)</subject><subject>Streptococcus thermophilus</subject><subject>Streptococcus thermophilus - genetics</subject><subject>Yogurt</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kl1rFDEUhgdR7Fq981oC3ig4NV_zkZtCO1VbWFCs4mXIZM7spM4kY5Jd2L_TX9qsW1steJOQc568OXl5s-wlwUeE0Pq9gukIkwLznNJH2YJgUecFY-XjbIGxEKnK8UH2LIQrjDHHZf00O2AlKzBh1SK7PjWz8tFEQH41o6XT64DOzAZ8MHGLjEWX0cMcnXZ614oD-MnNgxnToXHeQ5id7VLDoVOlf7bOAlK2Q5emA9QMKimcmb4HD1ZDQK5HFzGgr4OarAuQN87GxBi7Qg2MI_qh0vLFjdugtB6UTyrPsye9GgO8uN0Ps-8fP3xrzvPl508XzckyV7zGMWcdpO9y0QtVFC1ru5p1mLU1TWZohcu-4m0veq46rkhZV4rUWIGuoO2TZWXBDrPjve68bifoNNjo1Shnbyblt9IpI__tWDPIldtIUfGSijoJvN0LDA-unZ8s5a6W7OeixHhDEvvm9jHvfq0hRDmZoJMDyoJbB0krxktCq1Ik9PUD9MqtvU1WJKrgRYGp2FHv9pT2LgQP_d0EBMtdUGQKivwdFEnp_awqTPRe8D_sq7-NuRP-kyJ2AwwsyOo</recordid><startdate>20221213</startdate><enddate>20221213</enddate><creator>Lavelle, Katherine</creator><creator>Sadovskaya, Irina</creator><creator>Vinogradov, Evgeny</creator><creator>Kelleher, Philip</creator><creator>Lugli, Gabriele A</creator><creator>Ventura, Marco</creator><creator>van Sinderen, Douwe</creator><creator>Mahony, Jennifer</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-9189-2002</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid></search><sort><creationdate>20221213</creationdate><title>Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide</title><author>Lavelle, Katherine ; Sadovskaya, Irina ; Vinogradov, Evgeny ; Kelleher, Philip ; Lugli, Gabriele A ; Ventura, Marco ; van Sinderen, Douwe ; Mahony, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a480t-3de09949f9a55b3bd83d03b82533ca06f74bf9f4ad4a1687a180aec7ebf098653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biosynthesis</topic><topic>Cell Wall</topic><topic>Cell walls</topic><topic>Chains</topic><topic>Comparative analysis</topic><topic>Food Microbiology</topic><topic>Genetic diversity</topic><topic>Genetics and Molecular Biology</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Life Sciences</topic><topic>Phages</topic><topic>Polysaccharides</topic><topic>Rhamnose</topic><topic>Spotlight Selection</topic><topic>Strains (organisms)</topic><topic>Streptococcus thermophilus</topic><topic>Streptococcus thermophilus - genetics</topic><topic>Yogurt</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavelle, Katherine</creatorcontrib><creatorcontrib>Sadovskaya, Irina</creatorcontrib><creatorcontrib>Vinogradov, Evgeny</creatorcontrib><creatorcontrib>Kelleher, Philip</creatorcontrib><creatorcontrib>Lugli, Gabriele A</creatorcontrib><creatorcontrib>Ventura, Marco</creatorcontrib><creatorcontrib>van Sinderen, Douwe</creatorcontrib><creatorcontrib>Mahony, Jennifer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavelle, Katherine</au><au>Sadovskaya, Irina</au><au>Vinogradov, Evgeny</au><au>Kelleher, Philip</au><au>Lugli, Gabriele A</au><au>Ventura, Marco</au><au>van Sinderen, Douwe</au><au>Mahony, Jennifer</au><au>Ercolini, Danilo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide</atitle><jtitle>Applied and environmental microbiology</jtitle><stitle>Appl Environ Microbiol</stitle><addtitle>Appl Environ Microbiol</addtitle><date>2022-12-13</date><risdate>2022</risdate><volume>88</volume><issue>23</issue><spage>e0150422</spage><epage>e0150422</epage><pages>e0150422-e0150422</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed
) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct
genotypes identified (designated
through -
). In the present study, two additional genotypes were identified (designated
and
) through comparative analysis of the
loci of 78 Streptococcus thermophilus genomes. The
locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the
,
, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite
locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone.
Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus
loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus
loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>36350137</pmid><doi>10.1128/aem.01504-22</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4875-4560</orcidid><orcidid>https://orcid.org/0000-0003-1823-7957</orcidid><orcidid>https://orcid.org/0000-0002-9189-2002</orcidid><orcidid>https://orcid.org/0000-0002-7574-3824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2022-12, Vol.88 (23), p.e0150422-e0150422 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9746298 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Biosynthesis Cell Wall Cell walls Chains Comparative analysis Food Microbiology Genetic diversity Genetics and Molecular Biology Genomes Genotypes Life Sciences Phages Polysaccharides Rhamnose Spotlight Selection Strains (organisms) Streptococcus thermophilus Streptococcus thermophilus - genetics Yogurt |
title | Bipartite rgp Locus Diversity in Streptococcus thermophilus Corresponds to Backbone and Side Chain Differences of Its Rhamnose-Containing Cell Wall Polysaccharide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipartite%20rgp%20Locus%20Diversity%20in%20Streptococcus%20thermophilus%20Corresponds%20to%20Backbone%20and%20Side%20Chain%20Differences%20of%20Its%20Rhamnose-Containing%20Cell%20Wall%20Polysaccharide&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Lavelle,%20Katherine&rft.date=2022-12-13&rft.volume=88&rft.issue=23&rft.spage=e0150422&rft.epage=e0150422&rft.pages=e0150422-e0150422&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.01504-22&rft_dat=%3Cproquest_pubme%3E2754550299%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754550299&rft_id=info:pmid/36350137&rfr_iscdi=true |