Entanglement Characteristic Time from Complex Moduli via i-Rheo GT

Tassieri et al. have introduced a novel rheological tool called "i-Rheo " that allows the evaluation of the frequency-dependent materials' linear viscoelastic properties from a direct Fourier transform of the time-dependent relaxation modulus ( ), without artifacts. They adopted i-Rhe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-11, Vol.14 (23), p.5208
Hauptverfasser: Li, Dongdong, Feng, Lukun, Tang, Yin, Zhu, Caizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 5208
container_title Polymers
container_volume 14
creator Li, Dongdong
Feng, Lukun
Tang, Yin
Zhu, Caizhen
description Tassieri et al. have introduced a novel rheological tool called "i-Rheo " that allows the evaluation of the frequency-dependent materials' linear viscoelastic properties from a direct Fourier transform of the time-dependent relaxation modulus ( ), without artifacts. They adopted i-Rheo to exploit the information embedded in ( ) derived from molecular dynamics simulations of atomistic and quasi-atomistic models, and they estimated the polymers' entanglement characteristic time (τe) from the crossover point of the moduli at intermediate times, which had never been possible before because of the poor fitting performance, at short time scales, of the commonly used generalized Maxwell models. Here, we highlight that the values of τe reported by Tassieri et al. are significantly different (i.e., an order of magnitude smaller) from those reported in the literature, obtained from either experiments or molecular dynamics simulations of different observables. In this work, we demonstrate that consistent values of τe can be achieved if the initial values of ( ), i.e., those governed by the bond-oscillation dynamics, are discarded. These findings have been corroborated by adopting i-Rheo to Fourier transform the outcomes of three different molecular dynamics simulations based on the following three models: a dissipative particle dynamics model, a Kremer-Grest model, and an atomistic polyethylene model. Moreover, we have investigated the variations of τe as function of (i) the 'cadence' at which ( ) is evaluated, (ii) the spring constant of the atomic bone, and (iii) the initial value of the shear relaxation modulus (O). The ensemble of these results confirms the effectiveness of i-Rheo and provide new insights into the interpretation of molecular dynamics simulations for a better understanding of polymer dynamics.
doi_str_mv 10.3390/polym14235208
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753315747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f207aaab9c949abdcfae5a6d7b86dce28e1df1d90cf4d9e0d1dbc6f63d33a5763</originalsourceid><addsrcrecordid>eNpdkdFLwzAQxoMobsw9-ioFX3ypJk2TtC-CljmFiSDzOaRJumW0zUza4f57I5uyeS93cL_7uLsPgEsEbzHO4d3a1tsGpQkmCcxOwDCBDMcppvD0oB6AsfcrGCIllCJ2DgaYEogoxEPwOGk70S5q3ei2i4qlcEJ22hnfGRnNTaOjytkmKmyzrvVX9GpVX5toY0Rk4velttF0fgHOKlF7Pd7nEfh4msyL53j2Nn0pHmaxxAx1cRUWEkKUuczTXJRKVkITQRUrM6qkTjKNVIVUDmWVqlxDhVQpaUWxwlgQRvEI3O90133Z6DDSdk7UfO1MI9yWW2H4cac1S76wG56zFIYHBYGbvYCzn732HW-Ml7quRatt73nCCMaIsJQF9PofurK9a8N5gUozQkiCUKDiHSWd9d7p6m8ZBPmPQfzIoMBfHV7wR__agb8BCtyNag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748555211</pqid></control><display><type>article</type><title>Entanglement Characteristic Time from Complex Moduli via i-Rheo GT</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Li, Dongdong ; Feng, Lukun ; Tang, Yin ; Zhu, Caizhen</creator><creatorcontrib>Li, Dongdong ; Feng, Lukun ; Tang, Yin ; Zhu, Caizhen</creatorcontrib><description>Tassieri et al. have introduced a novel rheological tool called "i-Rheo " that allows the evaluation of the frequency-dependent materials' linear viscoelastic properties from a direct Fourier transform of the time-dependent relaxation modulus ( ), without artifacts. They adopted i-Rheo to exploit the information embedded in ( ) derived from molecular dynamics simulations of atomistic and quasi-atomistic models, and they estimated the polymers' entanglement characteristic time (τe) from the crossover point of the moduli at intermediate times, which had never been possible before because of the poor fitting performance, at short time scales, of the commonly used generalized Maxwell models. Here, we highlight that the values of τe reported by Tassieri et al. are significantly different (i.e., an order of magnitude smaller) from those reported in the literature, obtained from either experiments or molecular dynamics simulations of different observables. In this work, we demonstrate that consistent values of τe can be achieved if the initial values of ( ), i.e., those governed by the bond-oscillation dynamics, are discarded. These findings have been corroborated by adopting i-Rheo to Fourier transform the outcomes of three different molecular dynamics simulations based on the following three models: a dissipative particle dynamics model, a Kremer-Grest model, and an atomistic polyethylene model. Moreover, we have investigated the variations of τe as function of (i) the 'cadence' at which ( ) is evaluated, (ii) the spring constant of the atomic bone, and (iii) the initial value of the shear relaxation modulus (O). The ensemble of these results confirms the effectiveness of i-Rheo and provide new insights into the interpretation of molecular dynamics simulations for a better understanding of polymer dynamics.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14235208</identifier><identifier>PMID: 36501603</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Entanglement ; Equilibrium ; Fourier transforms ; Molecular dynamics ; Polyethylenes ; Polymer melts ; Random variables ; Rheological properties ; Rheology ; Simulation ; Spring constant ; Time dependence ; Viscoelasticity</subject><ispartof>Polymers, 2022-11, Vol.14 (23), p.5208</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-f207aaab9c949abdcfae5a6d7b86dce28e1df1d90cf4d9e0d1dbc6f63d33a5763</cites><orcidid>0000-0003-4098-5847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740520/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36501603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Feng, Lukun</creatorcontrib><creatorcontrib>Tang, Yin</creatorcontrib><creatorcontrib>Zhu, Caizhen</creatorcontrib><title>Entanglement Characteristic Time from Complex Moduli via i-Rheo GT</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Tassieri et al. have introduced a novel rheological tool called "i-Rheo " that allows the evaluation of the frequency-dependent materials' linear viscoelastic properties from a direct Fourier transform of the time-dependent relaxation modulus ( ), without artifacts. They adopted i-Rheo to exploit the information embedded in ( ) derived from molecular dynamics simulations of atomistic and quasi-atomistic models, and they estimated the polymers' entanglement characteristic time (τe) from the crossover point of the moduli at intermediate times, which had never been possible before because of the poor fitting performance, at short time scales, of the commonly used generalized Maxwell models. Here, we highlight that the values of τe reported by Tassieri et al. are significantly different (i.e., an order of magnitude smaller) from those reported in the literature, obtained from either experiments or molecular dynamics simulations of different observables. In this work, we demonstrate that consistent values of τe can be achieved if the initial values of ( ), i.e., those governed by the bond-oscillation dynamics, are discarded. These findings have been corroborated by adopting i-Rheo to Fourier transform the outcomes of three different molecular dynamics simulations based on the following three models: a dissipative particle dynamics model, a Kremer-Grest model, and an atomistic polyethylene model. Moreover, we have investigated the variations of τe as function of (i) the 'cadence' at which ( ) is evaluated, (ii) the spring constant of the atomic bone, and (iii) the initial value of the shear relaxation modulus (O). The ensemble of these results confirms the effectiveness of i-Rheo and provide new insights into the interpretation of molecular dynamics simulations for a better understanding of polymer dynamics.</description><subject>Entanglement</subject><subject>Equilibrium</subject><subject>Fourier transforms</subject><subject>Molecular dynamics</subject><subject>Polyethylenes</subject><subject>Polymer melts</subject><subject>Random variables</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Simulation</subject><subject>Spring constant</subject><subject>Time dependence</subject><subject>Viscoelasticity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFLwzAQxoMobsw9-ioFX3ypJk2TtC-CljmFiSDzOaRJumW0zUza4f57I5uyeS93cL_7uLsPgEsEbzHO4d3a1tsGpQkmCcxOwDCBDMcppvD0oB6AsfcrGCIllCJ2DgaYEogoxEPwOGk70S5q3ei2i4qlcEJ22hnfGRnNTaOjytkmKmyzrvVX9GpVX5toY0Rk4velttF0fgHOKlF7Pd7nEfh4msyL53j2Nn0pHmaxxAx1cRUWEkKUuczTXJRKVkITQRUrM6qkTjKNVIVUDmWVqlxDhVQpaUWxwlgQRvEI3O90133Z6DDSdk7UfO1MI9yWW2H4cac1S76wG56zFIYHBYGbvYCzn732HW-Ml7quRatt73nCCMaIsJQF9PofurK9a8N5gUozQkiCUKDiHSWd9d7p6m8ZBPmPQfzIoMBfHV7wR__agb8BCtyNag</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Li, Dongdong</creator><creator>Feng, Lukun</creator><creator>Tang, Yin</creator><creator>Zhu, Caizhen</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4098-5847</orcidid></search><sort><creationdate>20221130</creationdate><title>Entanglement Characteristic Time from Complex Moduli via i-Rheo GT</title><author>Li, Dongdong ; Feng, Lukun ; Tang, Yin ; Zhu, Caizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f207aaab9c949abdcfae5a6d7b86dce28e1df1d90cf4d9e0d1dbc6f63d33a5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Entanglement</topic><topic>Equilibrium</topic><topic>Fourier transforms</topic><topic>Molecular dynamics</topic><topic>Polyethylenes</topic><topic>Polymer melts</topic><topic>Random variables</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Simulation</topic><topic>Spring constant</topic><topic>Time dependence</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dongdong</creatorcontrib><creatorcontrib>Feng, Lukun</creatorcontrib><creatorcontrib>Tang, Yin</creatorcontrib><creatorcontrib>Zhu, Caizhen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dongdong</au><au>Feng, Lukun</au><au>Tang, Yin</au><au>Zhu, Caizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement Characteristic Time from Complex Moduli via i-Rheo GT</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2022-11-30</date><risdate>2022</risdate><volume>14</volume><issue>23</issue><spage>5208</spage><pages>5208-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Tassieri et al. have introduced a novel rheological tool called "i-Rheo " that allows the evaluation of the frequency-dependent materials' linear viscoelastic properties from a direct Fourier transform of the time-dependent relaxation modulus ( ), without artifacts. They adopted i-Rheo to exploit the information embedded in ( ) derived from molecular dynamics simulations of atomistic and quasi-atomistic models, and they estimated the polymers' entanglement characteristic time (τe) from the crossover point of the moduli at intermediate times, which had never been possible before because of the poor fitting performance, at short time scales, of the commonly used generalized Maxwell models. Here, we highlight that the values of τe reported by Tassieri et al. are significantly different (i.e., an order of magnitude smaller) from those reported in the literature, obtained from either experiments or molecular dynamics simulations of different observables. In this work, we demonstrate that consistent values of τe can be achieved if the initial values of ( ), i.e., those governed by the bond-oscillation dynamics, are discarded. These findings have been corroborated by adopting i-Rheo to Fourier transform the outcomes of three different molecular dynamics simulations based on the following three models: a dissipative particle dynamics model, a Kremer-Grest model, and an atomistic polyethylene model. Moreover, we have investigated the variations of τe as function of (i) the 'cadence' at which ( ) is evaluated, (ii) the spring constant of the atomic bone, and (iii) the initial value of the shear relaxation modulus (O). The ensemble of these results confirms the effectiveness of i-Rheo and provide new insights into the interpretation of molecular dynamics simulations for a better understanding of polymer dynamics.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36501603</pmid><doi>10.3390/polym14235208</doi><orcidid>https://orcid.org/0000-0003-4098-5847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-11, Vol.14 (23), p.5208
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740520
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library
subjects Entanglement
Equilibrium
Fourier transforms
Molecular dynamics
Polyethylenes
Polymer melts
Random variables
Rheological properties
Rheology
Simulation
Spring constant
Time dependence
Viscoelasticity
title Entanglement Characteristic Time from Complex Moduli via i-Rheo GT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A53%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20Characteristic%20Time%20from%20Complex%20Moduli%20via%20i-Rheo%20GT&rft.jtitle=Polymers&rft.au=Li,%20Dongdong&rft.date=2022-11-30&rft.volume=14&rft.issue=23&rft.spage=5208&rft.pages=5208-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14235208&rft_dat=%3Cproquest_pubme%3E2753315747%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748555211&rft_id=info:pmid/36501603&rfr_iscdi=true