Open Hole Tension of 3D Printed Aligned Discontinuous Composites

This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-12, Vol.15 (23), p.8698
Hauptverfasser: Krajangsawasdi, Narongkorn, Hamerton, Ian, Woods, Benjamin K S, Ivanov, Dmitry S, Longana, Marco L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 8698
container_title Materials
container_volume 15
creator Krajangsawasdi, Narongkorn
Hamerton, Ian
Woods, Benjamin K S
Ivanov, Dmitry S
Longana, Marco L
description This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.
doi_str_mv 10.3390/ma15238698
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742522</galeid><sourcerecordid>A745742522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMoKroXf4AUvIiwmo9J0lzEZf0EQQ_rOaRtukbaZG1awX9vFnVdxeQwIfPMm7wzCB0QfMqYwmetIZyyXKh8A-0SpcSYKIDNtfMOGsX4gtNijORUbaMdJjjGKbeLLh4W1me3obHZzProgs9CnbHL7LFzvrdVNmnc3Kd46WIZfO_8EIaYTUO7CNH1Nu6jrdo00Y6-4h56ur6aTW_H9w83d9PJ_bgEzPpxUfAcgFFOKJRSpE9DDoZWnBdQgSoENwCCElEpDhyAFKRiTMqcgJTASraHzj91F0PR2qq0vu9Moxeda033roNx-nfGu2c9D29aScBYiSRw_CXQhdfBxl63yZJtGuNtsqSp5IxhiaVM6NEf9CUMnU_2EgU55wLn9Ieam8Zq5-uQ3i2XonoigUugnC6p03-otCvbutRRW7t0_6vg5LOg7EKMna1XHgnWy5Hrn5En-HC9Kyv0e8DsA7BTocE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748556082</pqid></control><display><type>article</type><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</creator><creatorcontrib>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</creatorcontrib><description>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15238698</identifier><identifier>PMID: 36500194</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Carbon fibers ; Comparative analysis ; Continuous fiber composites ; Ductile-brittle transition ; Failure mechanisms ; Fiber reinforced polymers ; Filaments ; Manufacturing ; Mechanical properties ; Molding (process) ; Organic acids ; Polylactic acid ; Steering ; Stress concentration ; Tensile properties ; Tensile tests ; Thermoplastics ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Materials, 2022-12, Vol.15 (23), p.8698</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</citedby><cites>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</cites><orcidid>0000-0003-3113-0345 ; 0000-0002-0305-5926 ; 0000-0002-9111-6038 ; 0000-0002-8151-3195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36500194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajangsawasdi, Narongkorn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Woods, Benjamin K S</creatorcontrib><creatorcontrib>Ivanov, Dmitry S</creatorcontrib><creatorcontrib>Longana, Marco L</creatorcontrib><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Carbon fibers</subject><subject>Comparative analysis</subject><subject>Continuous fiber composites</subject><subject>Ductile-brittle transition</subject><subject>Failure mechanisms</subject><subject>Fiber reinforced polymers</subject><subject>Filaments</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Molding (process)</subject><subject>Organic acids</subject><subject>Polylactic acid</subject><subject>Steering</subject><subject>Stress concentration</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Thermoplastics</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkU1LxDAQhoMoKroXf4AUvIiwmo9J0lzEZf0EQQ_rOaRtukbaZG1awX9vFnVdxeQwIfPMm7wzCB0QfMqYwmetIZyyXKh8A-0SpcSYKIDNtfMOGsX4gtNijORUbaMdJjjGKbeLLh4W1me3obHZzProgs9CnbHL7LFzvrdVNmnc3Kd46WIZfO_8EIaYTUO7CNH1Nu6jrdo00Y6-4h56ur6aTW_H9w83d9PJ_bgEzPpxUfAcgFFOKJRSpE9DDoZWnBdQgSoENwCCElEpDhyAFKRiTMqcgJTASraHzj91F0PR2qq0vu9Moxeda033roNx-nfGu2c9D29aScBYiSRw_CXQhdfBxl63yZJtGuNtsqSp5IxhiaVM6NEf9CUMnU_2EgU55wLn9Ieam8Zq5-uQ3i2XonoigUugnC6p03-otCvbutRRW7t0_6vg5LOg7EKMna1XHgnWy5Hrn5En-HC9Kyv0e8DsA7BTocE</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Krajangsawasdi, Narongkorn</creator><creator>Hamerton, Ian</creator><creator>Woods, Benjamin K S</creator><creator>Ivanov, Dmitry S</creator><creator>Longana, Marco L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3113-0345</orcidid><orcidid>https://orcid.org/0000-0002-0305-5926</orcidid><orcidid>https://orcid.org/0000-0002-9111-6038</orcidid><orcidid>https://orcid.org/0000-0002-8151-3195</orcidid></search><sort><creationdate>20221206</creationdate><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><author>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Carbon fibers</topic><topic>Comparative analysis</topic><topic>Continuous fiber composites</topic><topic>Ductile-brittle transition</topic><topic>Failure mechanisms</topic><topic>Fiber reinforced polymers</topic><topic>Filaments</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Molding (process)</topic><topic>Organic acids</topic><topic>Polylactic acid</topic><topic>Steering</topic><topic>Stress concentration</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Thermoplastics</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajangsawasdi, Narongkorn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Woods, Benjamin K S</creatorcontrib><creatorcontrib>Ivanov, Dmitry S</creatorcontrib><creatorcontrib>Longana, Marco L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajangsawasdi, Narongkorn</au><au>Hamerton, Ian</au><au>Woods, Benjamin K S</au><au>Ivanov, Dmitry S</au><au>Longana, Marco L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>15</volume><issue>23</issue><spage>8698</spage><pages>8698-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36500194</pmid><doi>10.3390/ma15238698</doi><orcidid>https://orcid.org/0000-0003-3113-0345</orcidid><orcidid>https://orcid.org/0000-0002-0305-5926</orcidid><orcidid>https://orcid.org/0000-0002-9111-6038</orcidid><orcidid>https://orcid.org/0000-0002-8151-3195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-12, Vol.15 (23), p.8698
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740096
source MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects 3-D printers
3D printing
Carbon fibers
Comparative analysis
Continuous fiber composites
Ductile-brittle transition
Failure mechanisms
Fiber reinforced polymers
Filaments
Manufacturing
Mechanical properties
Molding (process)
Organic acids
Polylactic acid
Steering
Stress concentration
Tensile properties
Tensile tests
Thermoplastics
Three dimensional composites
Three dimensional printing
title Open Hole Tension of 3D Printed Aligned Discontinuous Composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Hole%20Tension%20of%203D%20Printed%20Aligned%20Discontinuous%20Composites&rft.jtitle=Materials&rft.au=Krajangsawasdi,%20Narongkorn&rft.date=2022-12-06&rft.volume=15&rft.issue=23&rft.spage=8698&rft.pages=8698-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15238698&rft_dat=%3Cgale_pubme%3EA745742522%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748556082&rft_id=info:pmid/36500194&rft_galeid=A745742522&rfr_iscdi=true