Open Hole Tension of 3D Printed Aligned Discontinuous Composites
This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around...
Gespeichert in:
Veröffentlicht in: | Materials 2022-12, Vol.15 (23), p.8698 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 8698 |
container_title | Materials |
container_volume | 15 |
creator | Krajangsawasdi, Narongkorn Hamerton, Ian Woods, Benjamin K S Ivanov, Dmitry S Longana, Marco L |
description | This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile. |
doi_str_mv | 10.3390/ma15238698 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745742522</galeid><sourcerecordid>A745742522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMoKroXf4AUvIiwmo9J0lzEZf0EQQ_rOaRtukbaZG1awX9vFnVdxeQwIfPMm7wzCB0QfMqYwmetIZyyXKh8A-0SpcSYKIDNtfMOGsX4gtNijORUbaMdJjjGKbeLLh4W1me3obHZzProgs9CnbHL7LFzvrdVNmnc3Kd46WIZfO_8EIaYTUO7CNH1Nu6jrdo00Y6-4h56ur6aTW_H9w83d9PJ_bgEzPpxUfAcgFFOKJRSpE9DDoZWnBdQgSoENwCCElEpDhyAFKRiTMqcgJTASraHzj91F0PR2qq0vu9Moxeda033roNx-nfGu2c9D29aScBYiSRw_CXQhdfBxl63yZJtGuNtsqSp5IxhiaVM6NEf9CUMnU_2EgU55wLn9Ieam8Zq5-uQ3i2XonoigUugnC6p03-otCvbutRRW7t0_6vg5LOg7EKMna1XHgnWy5Hrn5En-HC9Kyv0e8DsA7BTocE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748556082</pqid></control><display><type>article</type><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</creator><creatorcontrib>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</creatorcontrib><description>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15238698</identifier><identifier>PMID: 36500194</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; 3D printing ; Carbon fibers ; Comparative analysis ; Continuous fiber composites ; Ductile-brittle transition ; Failure mechanisms ; Fiber reinforced polymers ; Filaments ; Manufacturing ; Mechanical properties ; Molding (process) ; Organic acids ; Polylactic acid ; Steering ; Stress concentration ; Tensile properties ; Tensile tests ; Thermoplastics ; Three dimensional composites ; Three dimensional printing</subject><ispartof>Materials, 2022-12, Vol.15 (23), p.8698</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</citedby><cites>FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</cites><orcidid>0000-0003-3113-0345 ; 0000-0002-0305-5926 ; 0000-0002-9111-6038 ; 0000-0002-8151-3195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740096/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9740096/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36500194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krajangsawasdi, Narongkorn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Woods, Benjamin K S</creatorcontrib><creatorcontrib>Ivanov, Dmitry S</creatorcontrib><creatorcontrib>Longana, Marco L</creatorcontrib><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Carbon fibers</subject><subject>Comparative analysis</subject><subject>Continuous fiber composites</subject><subject>Ductile-brittle transition</subject><subject>Failure mechanisms</subject><subject>Fiber reinforced polymers</subject><subject>Filaments</subject><subject>Manufacturing</subject><subject>Mechanical properties</subject><subject>Molding (process)</subject><subject>Organic acids</subject><subject>Polylactic acid</subject><subject>Steering</subject><subject>Stress concentration</subject><subject>Tensile properties</subject><subject>Tensile tests</subject><subject>Thermoplastics</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkU1LxDAQhoMoKroXf4AUvIiwmo9J0lzEZf0EQQ_rOaRtukbaZG1awX9vFnVdxeQwIfPMm7wzCB0QfMqYwmetIZyyXKh8A-0SpcSYKIDNtfMOGsX4gtNijORUbaMdJjjGKbeLLh4W1me3obHZzProgs9CnbHL7LFzvrdVNmnc3Kd46WIZfO_8EIaYTUO7CNH1Nu6jrdo00Y6-4h56ur6aTW_H9w83d9PJ_bgEzPpxUfAcgFFOKJRSpE9DDoZWnBdQgSoENwCCElEpDhyAFKRiTMqcgJTASraHzj91F0PR2qq0vu9Moxeda033roNx-nfGu2c9D29aScBYiSRw_CXQhdfBxl63yZJtGuNtsqSp5IxhiaVM6NEf9CUMnU_2EgU55wLn9Ieam8Zq5-uQ3i2XonoigUugnC6p03-otCvbutRRW7t0_6vg5LOg7EKMna1XHgnWy5Hrn5En-HC9Kyv0e8DsA7BTocE</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Krajangsawasdi, Narongkorn</creator><creator>Hamerton, Ian</creator><creator>Woods, Benjamin K S</creator><creator>Ivanov, Dmitry S</creator><creator>Longana, Marco L</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3113-0345</orcidid><orcidid>https://orcid.org/0000-0002-0305-5926</orcidid><orcidid>https://orcid.org/0000-0002-9111-6038</orcidid><orcidid>https://orcid.org/0000-0002-8151-3195</orcidid></search><sort><creationdate>20221206</creationdate><title>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</title><author>Krajangsawasdi, Narongkorn ; Hamerton, Ian ; Woods, Benjamin K S ; Ivanov, Dmitry S ; Longana, Marco L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-bb5844325124c76a15484a2d55b4d49b65a446216d9545441b1d33778147743c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Carbon fibers</topic><topic>Comparative analysis</topic><topic>Continuous fiber composites</topic><topic>Ductile-brittle transition</topic><topic>Failure mechanisms</topic><topic>Fiber reinforced polymers</topic><topic>Filaments</topic><topic>Manufacturing</topic><topic>Mechanical properties</topic><topic>Molding (process)</topic><topic>Organic acids</topic><topic>Polylactic acid</topic><topic>Steering</topic><topic>Stress concentration</topic><topic>Tensile properties</topic><topic>Tensile tests</topic><topic>Thermoplastics</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krajangsawasdi, Narongkorn</creatorcontrib><creatorcontrib>Hamerton, Ian</creatorcontrib><creatorcontrib>Woods, Benjamin K S</creatorcontrib><creatorcontrib>Ivanov, Dmitry S</creatorcontrib><creatorcontrib>Longana, Marco L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krajangsawasdi, Narongkorn</au><au>Hamerton, Ian</au><au>Woods, Benjamin K S</au><au>Ivanov, Dmitry S</au><au>Longana, Marco L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Hole Tension of 3D Printed Aligned Discontinuous Composites</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>15</volume><issue>23</issue><spage>8698</spage><pages>8698-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36500194</pmid><doi>10.3390/ma15238698</doi><orcidid>https://orcid.org/0000-0003-3113-0345</orcidid><orcidid>https://orcid.org/0000-0002-0305-5926</orcidid><orcidid>https://orcid.org/0000-0002-9111-6038</orcidid><orcidid>https://orcid.org/0000-0002-8151-3195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-12, Vol.15 (23), p.8698 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9740096 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | 3-D printers 3D printing Carbon fibers Comparative analysis Continuous fiber composites Ductile-brittle transition Failure mechanisms Fiber reinforced polymers Filaments Manufacturing Mechanical properties Molding (process) Organic acids Polylactic acid Steering Stress concentration Tensile properties Tensile tests Thermoplastics Three dimensional composites Three dimensional printing |
title | Open Hole Tension of 3D Printed Aligned Discontinuous Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Hole%20Tension%20of%203D%20Printed%20Aligned%20Discontinuous%20Composites&rft.jtitle=Materials&rft.au=Krajangsawasdi,%20Narongkorn&rft.date=2022-12-06&rft.volume=15&rft.issue=23&rft.spage=8698&rft.pages=8698-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15238698&rft_dat=%3Cgale_pubme%3EA745742522%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748556082&rft_id=info:pmid/36500194&rft_galeid=A745742522&rfr_iscdi=true |