Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma

Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-11, Vol.14 (23), p.5788
Hauptverfasser: Sallam, Magy, Mysara, Mohamed, Baatout, Sarah, Guns, Pieter-Jan, Ramadan, Raghda, Benotmane, Mohammed Abderrafi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 5788
container_title Cancers
container_volume 14
creator Sallam, Magy
Mysara, Mohamed
Baatout, Sarah
Guns, Pieter-Jan
Ramadan, Raghda
Benotmane, Mohammed Abderrafi
description Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.
doi_str_mv 10.3390/cancers14235788
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9737249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745272956</galeid><sourcerecordid>A745272956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-9504b1b2c1ebfab00ae9013b43cc1c7782b978a31d2fceace20dcf3c511699e73</originalsourceid><addsrcrecordid>eNptkk1P3DAQhq0KVBBw7q2K1AuXgL8Sx5dKK2jpVkAroGdr4oypkROzcRZp_329WqCAsA8e2c_7jj0eQj4xeiSEpscWBotjYpKLSjXNB7LLqeJlXWu59SLeIQcp3dE8hGCqVh_JjqilVrzWu-TnBU5QzgYIq-RTEV1xdTkrr3FRnMIECadUzDscJu88puIyPmAofgdY5byFH4qz4GMbIE2xh32y7SAkPHhc98if799uTn6U57_O5iez89JKyadSV1S2rOWWYeugpRRQUyZaKaxlVqmGt1o1IFjHnUWwyGlnnbAVY7XWqMQe-brxvV-2PXY2326EYO5H38O4MhG8eX0y-L_mNj4YrYTiUmeDw0eDMS6WmCbT-2QxBBgwLpPhqsqVEkI0Gf3yBr2LyzFXa03JpmJVo_l_6hYCGj-4mPPatamZKVlxxXVVZ-roHSrPDntv44DO5_1XguONwI4xpRHd8xsZNesOMG86ICs-vyzNM__03-IfQwSsFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748515892</pqid></control><display><type>article</type><title>Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Sallam, Magy ; Mysara, Mohamed ; Baatout, Sarah ; Guns, Pieter-Jan ; Ramadan, Raghda ; Benotmane, Mohammed Abderrafi</creator><creatorcontrib>Sallam, Magy ; Mysara, Mohamed ; Baatout, Sarah ; Guns, Pieter-Jan ; Ramadan, Raghda ; Benotmane, Mohammed Abderrafi</creatorcontrib><description>Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14235788</identifier><identifier>PMID: 36497269</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biomarkers ; Brain cancer ; Cancer therapies ; Cell death ; Chemotherapy ; Datasets ; Development and progression ; Ferroptosis ; Gene expression ; Genetic aspects ; Glioblastoma ; Glioblastoma multiforme ; Glioma ; Meta-analysis ; Methods ; MicroRNAs ; miRNA ; Non-coding RNA ; Pathophysiology ; Proteins ; RNA sequencing ; Software ; Transcriptomics</subject><ispartof>Cancers, 2022-11, Vol.14 (23), p.5788</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c442t-9504b1b2c1ebfab00ae9013b43cc1c7782b978a31d2fceace20dcf3c511699e73</cites><orcidid>0000-0002-8640-6620 ; 0000-0002-6826-7858 ; 0000-0002-3040-8993 ; 0000-0001-8110-751X ; 0000-0001-5746-4330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36497269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sallam, Magy</creatorcontrib><creatorcontrib>Mysara, Mohamed</creatorcontrib><creatorcontrib>Baatout, Sarah</creatorcontrib><creatorcontrib>Guns, Pieter-Jan</creatorcontrib><creatorcontrib>Ramadan, Raghda</creatorcontrib><creatorcontrib>Benotmane, Mohammed Abderrafi</creatorcontrib><title>Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.</description><subject>Biomarkers</subject><subject>Brain cancer</subject><subject>Cancer therapies</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Datasets</subject><subject>Development and progression</subject><subject>Ferroptosis</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Glioblastoma</subject><subject>Glioblastoma multiforme</subject><subject>Glioma</subject><subject>Meta-analysis</subject><subject>Methods</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>Pathophysiology</subject><subject>Proteins</subject><subject>RNA sequencing</subject><subject>Software</subject><subject>Transcriptomics</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1P3DAQhq0KVBBw7q2K1AuXgL8Sx5dKK2jpVkAroGdr4oypkROzcRZp_329WqCAsA8e2c_7jj0eQj4xeiSEpscWBotjYpKLSjXNB7LLqeJlXWu59SLeIQcp3dE8hGCqVh_JjqilVrzWu-TnBU5QzgYIq-RTEV1xdTkrr3FRnMIECadUzDscJu88puIyPmAofgdY5byFH4qz4GMbIE2xh32y7SAkPHhc98if799uTn6U57_O5iez89JKyadSV1S2rOWWYeugpRRQUyZaKaxlVqmGt1o1IFjHnUWwyGlnnbAVY7XWqMQe-brxvV-2PXY2326EYO5H38O4MhG8eX0y-L_mNj4YrYTiUmeDw0eDMS6WmCbT-2QxBBgwLpPhqsqVEkI0Gf3yBr2LyzFXa03JpmJVo_l_6hYCGj-4mPPatamZKVlxxXVVZ-roHSrPDntv44DO5_1XguONwI4xpRHd8xsZNesOMG86ICs-vyzNM__03-IfQwSsFA</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Sallam, Magy</creator><creator>Mysara, Mohamed</creator><creator>Baatout, Sarah</creator><creator>Guns, Pieter-Jan</creator><creator>Ramadan, Raghda</creator><creator>Benotmane, Mohammed Abderrafi</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8640-6620</orcidid><orcidid>https://orcid.org/0000-0002-6826-7858</orcidid><orcidid>https://orcid.org/0000-0002-3040-8993</orcidid><orcidid>https://orcid.org/0000-0001-8110-751X</orcidid><orcidid>https://orcid.org/0000-0001-5746-4330</orcidid></search><sort><creationdate>20221124</creationdate><title>Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma</title><author>Sallam, Magy ; Mysara, Mohamed ; Baatout, Sarah ; Guns, Pieter-Jan ; Ramadan, Raghda ; Benotmane, Mohammed Abderrafi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-9504b1b2c1ebfab00ae9013b43cc1c7782b978a31d2fceace20dcf3c511699e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomarkers</topic><topic>Brain cancer</topic><topic>Cancer therapies</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Datasets</topic><topic>Development and progression</topic><topic>Ferroptosis</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Glioblastoma</topic><topic>Glioblastoma multiforme</topic><topic>Glioma</topic><topic>Meta-analysis</topic><topic>Methods</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>Pathophysiology</topic><topic>Proteins</topic><topic>RNA sequencing</topic><topic>Software</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sallam, Magy</creatorcontrib><creatorcontrib>Mysara, Mohamed</creatorcontrib><creatorcontrib>Baatout, Sarah</creatorcontrib><creatorcontrib>Guns, Pieter-Jan</creatorcontrib><creatorcontrib>Ramadan, Raghda</creatorcontrib><creatorcontrib>Benotmane, Mohammed Abderrafi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sallam, Magy</au><au>Mysara, Mohamed</au><au>Baatout, Sarah</au><au>Guns, Pieter-Jan</au><au>Ramadan, Raghda</au><au>Benotmane, Mohammed Abderrafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-11-24</date><risdate>2022</risdate><volume>14</volume><issue>23</issue><spage>5788</spage><pages>5788-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36497269</pmid><doi>10.3390/cancers14235788</doi><orcidid>https://orcid.org/0000-0002-8640-6620</orcidid><orcidid>https://orcid.org/0000-0002-6826-7858</orcidid><orcidid>https://orcid.org/0000-0002-3040-8993</orcidid><orcidid>https://orcid.org/0000-0001-8110-751X</orcidid><orcidid>https://orcid.org/0000-0001-5746-4330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-11, Vol.14 (23), p.5788
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9737249
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Biomarkers
Brain cancer
Cancer therapies
Cell death
Chemotherapy
Datasets
Development and progression
Ferroptosis
Gene expression
Genetic aspects
Glioblastoma
Glioblastoma multiforme
Glioma
Meta-analysis
Methods
MicroRNAs
miRNA
Non-coding RNA
Pathophysiology
Proteins
RNA sequencing
Software
Transcriptomics
title Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta-Analysis%20of%20RNA-Seq%20Datasets%20Identifies%20Novel%20Players%20in%20Glioblastoma&rft.jtitle=Cancers&rft.au=Sallam,%20Magy&rft.date=2022-11-24&rft.volume=14&rft.issue=23&rft.spage=5788&rft.pages=5788-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14235788&rft_dat=%3Cgale_pubme%3EA745272956%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748515892&rft_id=info:pmid/36497269&rft_galeid=A745272956&rfr_iscdi=true