Evolutionary Aspects of the Unfolded Protein Response

The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold Spring Harbor perspectives in biology 2022-12, Vol.14 (12), p.a041262
1. Verfasser: Mori, Kazutoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page a041262
container_title Cold Spring Harbor perspectives in biology
container_volume 14
creator Mori, Kazutoshi
description The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.
doi_str_mv 10.1101/cshperspect.a041262
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700315027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNbdNmhehlHqBgiL2OaTZid2y3azJbsF_72prqTIPMzDfHM5wELokeEgIJrc2LmsIsQbbDA3mhAp6hPpEcZZiKvjxwdxDZzGuMBZCjcQp6rFMcawI7qNsuvFl2xS-MuEzGf-oxcS7pFlCMq-cL3PIk5fgGyiq5BVi7asI5-jEmTLCxa4P0Px--jZ5TGfPD0-T8Sy1PONNakEspFgQyrkCk1GrsHS5VVYyZw0THCwzgmJpmRSZUza3OSiXS2cWxDjDBuhuq1u3izXkFqommFLXoVh3drU3hf67qYqlfvcbrSSjIzXqBG52AsF_tBAbvS6ihbI0Ffg2aioxZiTDVHbo9T905dtQde91FJdZV5h2FNtSNvgYA7i9GYL1dyz6IBa9i6W7ujr8Y3_zmwP7Aqpijfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747575702</pqid></control><display><type>article</type><title>Evolutionary Aspects of the Unfolded Protein Response</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mori, Kazutoshi</creator><creatorcontrib>Mori, Kazutoshi</creatorcontrib><description>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</description><identifier>ISSN: 1943-0264</identifier><identifier>EISSN: 1943-0264</identifier><identifier>DOI: 10.1101/cshperspect.a041262</identifier><identifier>PMID: 35940910</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Activating Transcription Factor 6 - genetics ; Activating Transcription Factor 6 - metabolism ; Animals ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endoribonucleases - metabolism ; Evolution ; Homeostasis ; Humans ; Invertebrates ; Membrane proteins ; PERSPECTIVES ; Phenotypes ; Protein folding ; Protein Serine-Threonine Kinases ; Proteins ; Saccharomyces cerevisiae - metabolism ; Transducers ; Unfolded Protein Response ; Vertebrates ; Yeast ; Yeasts</subject><ispartof>Cold Spring Harbor perspectives in biology, 2022-12, Vol.14 (12), p.a041262</ispartof><rights>Copyright © 2022 Cold Spring Harbor Laboratory Press; all rights reserved.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Dec 2022</rights><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35940910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mori, Kazutoshi</creatorcontrib><title>Evolutionary Aspects of the Unfolded Protein Response</title><title>Cold Spring Harbor perspectives in biology</title><addtitle>Cold Spring Harb Perspect Biol</addtitle><description>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</description><subject>Activating Transcription Factor 6 - genetics</subject><subject>Activating Transcription Factor 6 - metabolism</subject><subject>Animals</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endoribonucleases - metabolism</subject><subject>Evolution</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Invertebrates</subject><subject>Membrane proteins</subject><subject>PERSPECTIVES</subject><subject>Phenotypes</subject><subject>Protein folding</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Transducers</subject><subject>Unfolded Protein Response</subject><subject>Vertebrates</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-0264</issn><issn>1943-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNbdNmhehlHqBgiL2OaTZid2y3azJbsF_72prqTIPMzDfHM5wELokeEgIJrc2LmsIsQbbDA3mhAp6hPpEcZZiKvjxwdxDZzGuMBZCjcQp6rFMcawI7qNsuvFl2xS-MuEzGf-oxcS7pFlCMq-cL3PIk5fgGyiq5BVi7asI5-jEmTLCxa4P0Px--jZ5TGfPD0-T8Sy1PONNakEspFgQyrkCk1GrsHS5VVYyZw0THCwzgmJpmRSZUza3OSiXS2cWxDjDBuhuq1u3izXkFqommFLXoVh3drU3hf67qYqlfvcbrSSjIzXqBG52AsF_tBAbvS6ihbI0Ffg2aioxZiTDVHbo9T905dtQde91FJdZV5h2FNtSNvgYA7i9GYL1dyz6IBa9i6W7ujr8Y3_zmwP7Aqpijfk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mori, Kazutoshi</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>Evolutionary Aspects of the Unfolded Protein Response</title><author>Mori, Kazutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activating Transcription Factor 6 - genetics</topic><topic>Activating Transcription Factor 6 - metabolism</topic><topic>Animals</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endoribonucleases - metabolism</topic><topic>Evolution</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Invertebrates</topic><topic>Membrane proteins</topic><topic>PERSPECTIVES</topic><topic>Phenotypes</topic><topic>Protein folding</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Transducers</topic><topic>Unfolded Protein Response</topic><topic>Vertebrates</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Kazutoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cold Spring Harbor perspectives in biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Kazutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Aspects of the Unfolded Protein Response</atitle><jtitle>Cold Spring Harbor perspectives in biology</jtitle><addtitle>Cold Spring Harb Perspect Biol</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>a041262</spage><pages>a041262-</pages><issn>1943-0264</issn><eissn>1943-0264</eissn><abstract>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>35940910</pmid><doi>10.1101/cshperspect.a041262</doi></addata></record>
fulltext fulltext
identifier ISSN: 1943-0264
ispartof Cold Spring Harbor perspectives in biology, 2022-12, Vol.14 (12), p.a041262
issn 1943-0264
1943-0264
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732898
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Activating Transcription Factor 6 - genetics
Activating Transcription Factor 6 - metabolism
Animals
eIF-2 Kinase - genetics
eIF-2 Kinase - metabolism
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Endoribonucleases - metabolism
Evolution
Homeostasis
Humans
Invertebrates
Membrane proteins
PERSPECTIVES
Phenotypes
Protein folding
Protein Serine-Threonine Kinases
Proteins
Saccharomyces cerevisiae - metabolism
Transducers
Unfolded Protein Response
Vertebrates
Yeast
Yeasts
title Evolutionary Aspects of the Unfolded Protein Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Aspects%20of%20the%20Unfolded%20Protein%20Response&rft.jtitle=Cold%20Spring%20Harbor%20perspectives%20in%20biology&rft.au=Mori,%20Kazutoshi&rft.date=2022-12-01&rft.volume=14&rft.issue=12&rft.spage=a041262&rft.pages=a041262-&rft.issn=1943-0264&rft.eissn=1943-0264&rft_id=info:doi/10.1101/cshperspect.a041262&rft_dat=%3Cproquest_pubme%3E2700315027%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747575702&rft_id=info:pmid/35940910&rfr_iscdi=true