Evolutionary Aspects of the Unfolded Protein Response
The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number...
Gespeichert in:
Veröffentlicht in: | Cold Spring Harbor perspectives in biology 2022-12, Vol.14 (12), p.a041262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | a041262 |
container_title | Cold Spring Harbor perspectives in biology |
container_volume | 14 |
creator | Mori, Kazutoshi |
description | The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs. |
doi_str_mv | 10.1101/cshperspect.a041262 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700315027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</originalsourceid><addsrcrecordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNbdNmhehlHqBgiL2OaTZid2y3azJbsF_72prqTIPMzDfHM5wELokeEgIJrc2LmsIsQbbDA3mhAp6hPpEcZZiKvjxwdxDZzGuMBZCjcQp6rFMcawI7qNsuvFl2xS-MuEzGf-oxcS7pFlCMq-cL3PIk5fgGyiq5BVi7asI5-jEmTLCxa4P0Px--jZ5TGfPD0-T8Sy1PONNakEspFgQyrkCk1GrsHS5VVYyZw0THCwzgmJpmRSZUza3OSiXS2cWxDjDBuhuq1u3izXkFqommFLXoVh3drU3hf67qYqlfvcbrSSjIzXqBG52AsF_tBAbvS6ihbI0Ffg2aioxZiTDVHbo9T905dtQde91FJdZV5h2FNtSNvgYA7i9GYL1dyz6IBa9i6W7ujr8Y3_zmwP7Aqpijfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747575702</pqid></control><display><type>article</type><title>Evolutionary Aspects of the Unfolded Protein Response</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Mori, Kazutoshi</creator><creatorcontrib>Mori, Kazutoshi</creatorcontrib><description>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</description><identifier>ISSN: 1943-0264</identifier><identifier>EISSN: 1943-0264</identifier><identifier>DOI: 10.1101/cshperspect.a041262</identifier><identifier>PMID: 35940910</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Activating Transcription Factor 6 - genetics ; Activating Transcription Factor 6 - metabolism ; Animals ; eIF-2 Kinase - genetics ; eIF-2 Kinase - metabolism ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Endoribonucleases - metabolism ; Evolution ; Homeostasis ; Humans ; Invertebrates ; Membrane proteins ; PERSPECTIVES ; Phenotypes ; Protein folding ; Protein Serine-Threonine Kinases ; Proteins ; Saccharomyces cerevisiae - metabolism ; Transducers ; Unfolded Protein Response ; Vertebrates ; Yeast ; Yeasts</subject><ispartof>Cold Spring Harbor perspectives in biology, 2022-12, Vol.14 (12), p.a041262</ispartof><rights>Copyright © 2022 Cold Spring Harbor Laboratory Press; all rights reserved.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Dec 2022</rights><rights>2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732898/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9732898/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35940910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mori, Kazutoshi</creatorcontrib><title>Evolutionary Aspects of the Unfolded Protein Response</title><title>Cold Spring Harbor perspectives in biology</title><addtitle>Cold Spring Harb Perspect Biol</addtitle><description>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</description><subject>Activating Transcription Factor 6 - genetics</subject><subject>Activating Transcription Factor 6 - metabolism</subject><subject>Animals</subject><subject>eIF-2 Kinase - genetics</subject><subject>eIF-2 Kinase - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Endoribonucleases - metabolism</subject><subject>Evolution</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Invertebrates</subject><subject>Membrane proteins</subject><subject>PERSPECTIVES</subject><subject>Phenotypes</subject><subject>Protein folding</subject><subject>Protein Serine-Threonine Kinases</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Transducers</subject><subject>Unfolded Protein Response</subject><subject>Vertebrates</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1943-0264</issn><issn>1943-0264</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkVtLAzEQhYMotlZ_gSALvviyNbdNmhehlHqBgiL2OaTZid2y3azJbsF_72prqTIPMzDfHM5wELokeEgIJrc2LmsIsQbbDA3mhAp6hPpEcZZiKvjxwdxDZzGuMBZCjcQp6rFMcawI7qNsuvFl2xS-MuEzGf-oxcS7pFlCMq-cL3PIk5fgGyiq5BVi7asI5-jEmTLCxa4P0Px--jZ5TGfPD0-T8Sy1PONNakEspFgQyrkCk1GrsHS5VVYyZw0THCwzgmJpmRSZUza3OSiXS2cWxDjDBuhuq1u3izXkFqommFLXoVh3drU3hf67qYqlfvcbrSSjIzXqBG52AsF_tBAbvS6ihbI0Ffg2aioxZiTDVHbo9T905dtQde91FJdZV5h2FNtSNvgYA7i9GYL1dyz6IBa9i6W7ujr8Y3_zmwP7Aqpijfk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Mori, Kazutoshi</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>Evolutionary Aspects of the Unfolded Protein Response</title><author>Mori, Kazutoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-ce6b76b12449ea52c907fdc9c73fca364ec3a6207c3765f9cdcde9fd7fab1afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activating Transcription Factor 6 - genetics</topic><topic>Activating Transcription Factor 6 - metabolism</topic><topic>Animals</topic><topic>eIF-2 Kinase - genetics</topic><topic>eIF-2 Kinase - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Endoribonucleases - metabolism</topic><topic>Evolution</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Invertebrates</topic><topic>Membrane proteins</topic><topic>PERSPECTIVES</topic><topic>Phenotypes</topic><topic>Protein folding</topic><topic>Protein Serine-Threonine Kinases</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Transducers</topic><topic>Unfolded Protein Response</topic><topic>Vertebrates</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, Kazutoshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cold Spring Harbor perspectives in biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, Kazutoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Aspects of the Unfolded Protein Response</atitle><jtitle>Cold Spring Harbor perspectives in biology</jtitle><addtitle>Cold Spring Harb Perspect Biol</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>a041262</spage><pages>a041262-</pages><issn>1943-0264</issn><eissn>1943-0264</eissn><abstract>The unfolded protein response (UPR) is activated when unfolded proteins accumulate in the endoplasmic reticulum (ER). The basic mechanism of the UPR in maintaining ER homeostasis has been clarified from yeast to humans. The UPR is triggered by one or more transmembrane proteins in the ER. The number of canonical UPR sensors/transducers has increased during evolution, from one (IRE1) in yeast to three (IRE1, PERK, and ATF6) in invertebrates and five (IRE1α, IRE1β, PERK, ATF6α, and ATF6β) in vertebrates. Here, I initially describe the four major changes that have occurred during evolution: (1) advent of PERK in metazoans; (2) switch in transcription factor downstream of IRE1 in metazoans; (3) switch in regulator of ER chaperone induction in vertebrates; and (4) increase in the number of ATF6-like local factors in vertebrates. I then discuss the causes of the phenotypes of vertebrate knockout animals and refer to regulated IRE1-dependent decay of mRNAs.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>35940910</pmid><doi>10.1101/cshperspect.a041262</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0264 |
ispartof | Cold Spring Harbor perspectives in biology, 2022-12, Vol.14 (12), p.a041262 |
issn | 1943-0264 1943-0264 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9732898 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Activating Transcription Factor 6 - genetics Activating Transcription Factor 6 - metabolism Animals eIF-2 Kinase - genetics eIF-2 Kinase - metabolism Endoplasmic reticulum Endoplasmic Reticulum Stress Endoribonucleases - metabolism Evolution Homeostasis Humans Invertebrates Membrane proteins PERSPECTIVES Phenotypes Protein folding Protein Serine-Threonine Kinases Proteins Saccharomyces cerevisiae - metabolism Transducers Unfolded Protein Response Vertebrates Yeast Yeasts |
title | Evolutionary Aspects of the Unfolded Protein Response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A14%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Aspects%20of%20the%20Unfolded%20Protein%20Response&rft.jtitle=Cold%20Spring%20Harbor%20perspectives%20in%20biology&rft.au=Mori,%20Kazutoshi&rft.date=2022-12-01&rft.volume=14&rft.issue=12&rft.spage=a041262&rft.pages=a041262-&rft.issn=1943-0264&rft.eissn=1943-0264&rft_id=info:doi/10.1101/cshperspect.a041262&rft_dat=%3Cproquest_pubme%3E2700315027%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747575702&rft_id=info:pmid/35940910&rfr_iscdi=true |