Genotype and environment interaction and stability of grain yield and oil content of rapeseed cultivars

Investigating the interaction of genotype and environment in multi‐environment experiments (MET) is one of the reliable techniques to demonstrate the most stable and compatible cultivars. The main contribution of this study is to evaluate the stability and compatibility of rapeseed cultivars using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food Science & Nutrition 2022-12, Vol.10 (12), p.4308-4318
Hauptverfasser: Qasemi, Seyed Hamed, Mostafavi, Khodadad, Khosroshahli, Mahmoud, Bihamta, Mohammad Reza, Ramshini, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigating the interaction of genotype and environment in multi‐environment experiments (MET) is one of the reliable techniques to demonstrate the most stable and compatible cultivars. The main contribution of this study is to evaluate the stability and compatibility of rapeseed cultivars using additive main effects and multiplicative interaction (AMMI) and genotype plus genotype environment interaction (GGE) bi‐plot methods for grain yield and oil content. For this purpose, an experiment in a randomized complete block design (RCBD) with three replications was conducted for 10 rapeseed cultivars across 10 environments (five regions in 2 years). Hence, the proposed technique can be used to identify the superior cultivars corresponding to the multivariant properties including yield and oil content. To do so, a case‐study analysis was conducted over rapeseed, while more than 96% of the data variance for grain yield and more than 94% of the data variance for oil content were explained based on the AMMI model. According to the AMMI model, it was observed that the “Zarfam” and “Licord” genotypes were introduced as favorable genotypes for grain yield and oil content, respectively. “Karaj1” and “Sanandaj1” were selected as the superior environments for yield trait, “Kashmar2” for oil content, and “Licord” and “Kashmar2” were identified as the superior genotypes and environment for oil content, respectively. Graphical GGE bi‐plot illustrated that “Hyola401,” “Okapi,” and “Sarigol” for grain yield and “Option500” and “Sunday” for oil content were identified as stable and high‐yield genotypes. “Sanandaj1” for grain yield and “Karaj2” for oil content were identified as environments with high differentiation and screening power. This study was performed to evaluate the stability and compatibility of rapeseed cultivars in terms of grain yield and oil content in ten rapeseed cultivars in ten environments
ISSN:2048-7177
2048-7177
DOI:10.1002/fsn3.3023