Breeding for disease resistance in soybean: a global perspective

Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding program...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2022-11, Vol.135 (11), p.3773-3872
Hauptverfasser: Lin, Feng, Chhapekar, Sushil Satish, Vieira, Caio Canella, Da Silva, Marcos Paulo, Rojas, Alejandro, Lee, Dongho, Liu, Nianxi, Pardo, Esteban Mariano, Lee, Yi-Chen, Dong, Zhimin, Pinheiro, Jose Baldin, Ploper, Leonardo Daniel, Rupe, John, Chen, Pengyin, Wang, Dechun, Nguyen, Henry T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3872
container_issue 11
container_start_page 3773
container_title Theoretical and applied genetics
container_volume 135
creator Lin, Feng
Chhapekar, Sushil Satish
Vieira, Caio Canella
Da Silva, Marcos Paulo
Rojas, Alejandro
Lee, Dongho
Liu, Nianxi
Pardo, Esteban Mariano
Lee, Yi-Chen
Dong, Zhimin
Pinheiro, Jose Baldin
Ploper, Leonardo Daniel
Rupe, John
Chen, Pengyin
Wang, Dechun
Nguyen, Henry T.
description Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
doi_str_mv 10.1007/s00122-022-04101-3
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9729162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729304371</galeid><sourcerecordid>A729304371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoSbZpv0AOxdBTD05HkmXZPZSkoW0CgUCanoUsjxwFr7SVvKH59pXZ_FsIQQwCze89ZvQIOaBwSAHklwRAGSthrooCLfkOWdCKs5Kxir0hC4AKSiEF2yPvUroBACaA75I9LmQLouILcvQ9IvbOD4UNsehdQp2wiJhcmrQ3WDhfpHDXofZfC10MY-j0WKwwphWayd3ie_LW6jHhh_t7n_z5-ePq5LQ8v_h1dnJ8Xpo8wFRK2XDI1Qsh6oZTVgsUiGCt4A1YRuuec9NRY0RjaWt7xoHprtYApm4byffJt43vat0tsTfop6hHtYpuqeOdCtqp7Y5312oIt6qVrKU1ywaf7g1i-LvGNKmbsI4-z6yYrKTgLavoEzXoEZXzNmQzs3TJqONsxKHicqYOX6Dy6XHpTPBoXX7fEnzeEmRmwn_ToNcpqbPfl9ss27AmhpQi2sclKag5eLUJXsFcc_CKZ9HH59_zKHlIOgN8A6Tc8gPGp_Vfsf0PF3y1SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747539241</pqid></control><display><type>article</type><title>Breeding for disease resistance in soybean: a global perspective</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</creator><creatorcontrib>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</creatorcontrib><description>Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04101-3</identifier><identifier>PMID: 35790543</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural industry ; Agricultural research ; Agriculture ; Alleles ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding towards Agricultural Sustainability ; Chromosome mapping ; Climate change ; Copy number ; Disease ; Disease resistance ; Disease Resistance - genetics ; Diseases and pests ; DNA Copy Number Variations ; Genetic aspects ; Genomics ; Glycine max ; Glycine max - genetics ; International aspects ; Life Sciences ; Marker-assisted selection ; Methods ; Nomenclature ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant immunology ; Production management ; Production processes ; Quantitative trait loci ; Review ; Reviews ; Soybean ; Soybeans</subject><ispartof>Theoretical and applied genetics, 2022-11, Vol.135 (11), p.3773-3872</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</citedby><cites>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</cites><orcidid>0000-0001-5492-5963 ; 0000-0003-1294-2081 ; 0000-0001-6777-0307 ; 0000-0001-5428-3753 ; 0000-0002-9802-884X ; 0000-0002-7597-1800 ; 0000-0001-9032-4479 ; 0000-0001-7491-4444 ; 0000-0001-7322-7837 ; 0000-0002-8842-3758 ; 0000-0002-5918-4727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04101-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04101-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35790543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Chhapekar, Sushil Satish</creatorcontrib><creatorcontrib>Vieira, Caio Canella</creatorcontrib><creatorcontrib>Da Silva, Marcos Paulo</creatorcontrib><creatorcontrib>Rojas, Alejandro</creatorcontrib><creatorcontrib>Lee, Dongho</creatorcontrib><creatorcontrib>Liu, Nianxi</creatorcontrib><creatorcontrib>Pardo, Esteban Mariano</creatorcontrib><creatorcontrib>Lee, Yi-Chen</creatorcontrib><creatorcontrib>Dong, Zhimin</creatorcontrib><creatorcontrib>Pinheiro, Jose Baldin</creatorcontrib><creatorcontrib>Ploper, Leonardo Daniel</creatorcontrib><creatorcontrib>Rupe, John</creatorcontrib><creatorcontrib>Chen, Pengyin</creatorcontrib><creatorcontrib>Wang, Dechun</creatorcontrib><creatorcontrib>Nguyen, Henry T.</creatorcontrib><title>Breeding for disease resistance in soybean: a global perspective</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</description><subject>Agricultural industry</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding towards Agricultural Sustainability</subject><subject>Chromosome mapping</subject><subject>Climate change</subject><subject>Copy number</subject><subject>Disease</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>DNA Copy Number Variations</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>International aspects</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Nomenclature</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Production management</subject><subject>Production processes</subject><subject>Quantitative trait loci</subject><subject>Review</subject><subject>Reviews</subject><subject>Soybean</subject><subject>Soybeans</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVoSbZpv0AOxdBTD05HkmXZPZSkoW0CgUCanoUsjxwFr7SVvKH59pXZ_FsIQQwCze89ZvQIOaBwSAHklwRAGSthrooCLfkOWdCKs5Kxir0hC4AKSiEF2yPvUroBACaA75I9LmQLouILcvQ9IvbOD4UNsehdQp2wiJhcmrQ3WDhfpHDXofZfC10MY-j0WKwwphWayd3ie_LW6jHhh_t7n_z5-ePq5LQ8v_h1dnJ8Xpo8wFRK2XDI1Qsh6oZTVgsUiGCt4A1YRuuec9NRY0RjaWt7xoHprtYApm4byffJt43vat0tsTfop6hHtYpuqeOdCtqp7Y5312oIt6qVrKU1ywaf7g1i-LvGNKmbsI4-z6yYrKTgLavoEzXoEZXzNmQzs3TJqONsxKHicqYOX6Dy6XHpTPBoXX7fEnzeEmRmwn_ToNcpqbPfl9ss27AmhpQi2sclKag5eLUJXsFcc_CKZ9HH59_zKHlIOgN8A6Tc8gPGp_Vfsf0PF3y1SQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Lin, Feng</creator><creator>Chhapekar, Sushil Satish</creator><creator>Vieira, Caio Canella</creator><creator>Da Silva, Marcos Paulo</creator><creator>Rojas, Alejandro</creator><creator>Lee, Dongho</creator><creator>Liu, Nianxi</creator><creator>Pardo, Esteban Mariano</creator><creator>Lee, Yi-Chen</creator><creator>Dong, Zhimin</creator><creator>Pinheiro, Jose Baldin</creator><creator>Ploper, Leonardo Daniel</creator><creator>Rupe, John</creator><creator>Chen, Pengyin</creator><creator>Wang, Dechun</creator><creator>Nguyen, Henry T.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5492-5963</orcidid><orcidid>https://orcid.org/0000-0003-1294-2081</orcidid><orcidid>https://orcid.org/0000-0001-6777-0307</orcidid><orcidid>https://orcid.org/0000-0001-5428-3753</orcidid><orcidid>https://orcid.org/0000-0002-9802-884X</orcidid><orcidid>https://orcid.org/0000-0002-7597-1800</orcidid><orcidid>https://orcid.org/0000-0001-9032-4479</orcidid><orcidid>https://orcid.org/0000-0001-7491-4444</orcidid><orcidid>https://orcid.org/0000-0001-7322-7837</orcidid><orcidid>https://orcid.org/0000-0002-8842-3758</orcidid><orcidid>https://orcid.org/0000-0002-5918-4727</orcidid></search><sort><creationdate>20221101</creationdate><title>Breeding for disease resistance in soybean: a global perspective</title><author>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural industry</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding towards Agricultural Sustainability</topic><topic>Chromosome mapping</topic><topic>Climate change</topic><topic>Copy number</topic><topic>Disease</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>DNA Copy Number Variations</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>International aspects</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Nomenclature</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Production management</topic><topic>Production processes</topic><topic>Quantitative trait loci</topic><topic>Review</topic><topic>Reviews</topic><topic>Soybean</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Chhapekar, Sushil Satish</creatorcontrib><creatorcontrib>Vieira, Caio Canella</creatorcontrib><creatorcontrib>Da Silva, Marcos Paulo</creatorcontrib><creatorcontrib>Rojas, Alejandro</creatorcontrib><creatorcontrib>Lee, Dongho</creatorcontrib><creatorcontrib>Liu, Nianxi</creatorcontrib><creatorcontrib>Pardo, Esteban Mariano</creatorcontrib><creatorcontrib>Lee, Yi-Chen</creatorcontrib><creatorcontrib>Dong, Zhimin</creatorcontrib><creatorcontrib>Pinheiro, Jose Baldin</creatorcontrib><creatorcontrib>Ploper, Leonardo Daniel</creatorcontrib><creatorcontrib>Rupe, John</creatorcontrib><creatorcontrib>Chen, Pengyin</creatorcontrib><creatorcontrib>Wang, Dechun</creatorcontrib><creatorcontrib>Nguyen, Henry T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Feng</au><au>Chhapekar, Sushil Satish</au><au>Vieira, Caio Canella</au><au>Da Silva, Marcos Paulo</au><au>Rojas, Alejandro</au><au>Lee, Dongho</au><au>Liu, Nianxi</au><au>Pardo, Esteban Mariano</au><au>Lee, Yi-Chen</au><au>Dong, Zhimin</au><au>Pinheiro, Jose Baldin</au><au>Ploper, Leonardo Daniel</au><au>Rupe, John</au><au>Chen, Pengyin</au><au>Wang, Dechun</au><au>Nguyen, Henry T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breeding for disease resistance in soybean: a global perspective</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>135</volume><issue>11</issue><spage>3773</spage><epage>3872</epage><pages>3773-3872</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35790543</pmid><doi>10.1007/s00122-022-04101-3</doi><tpages>100</tpages><orcidid>https://orcid.org/0000-0001-5492-5963</orcidid><orcidid>https://orcid.org/0000-0003-1294-2081</orcidid><orcidid>https://orcid.org/0000-0001-6777-0307</orcidid><orcidid>https://orcid.org/0000-0001-5428-3753</orcidid><orcidid>https://orcid.org/0000-0002-9802-884X</orcidid><orcidid>https://orcid.org/0000-0002-7597-1800</orcidid><orcidid>https://orcid.org/0000-0001-9032-4479</orcidid><orcidid>https://orcid.org/0000-0001-7491-4444</orcidid><orcidid>https://orcid.org/0000-0001-7322-7837</orcidid><orcidid>https://orcid.org/0000-0002-8842-3758</orcidid><orcidid>https://orcid.org/0000-0002-5918-4727</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2022-11, Vol.135 (11), p.3773-3872
issn 0040-5752
1432-2242
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9729162
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agricultural industry
Agricultural research
Agriculture
Alleles
Biochemistry
Biomedical and Life Sciences
Biotechnology
Breeding towards Agricultural Sustainability
Chromosome mapping
Climate change
Copy number
Disease
Disease resistance
Disease Resistance - genetics
Diseases and pests
DNA Copy Number Variations
Genetic aspects
Genomics
Glycine max
Glycine max - genetics
International aspects
Life Sciences
Marker-assisted selection
Methods
Nomenclature
Plant Biochemistry
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant immunology
Production management
Production processes
Quantitative trait loci
Review
Reviews
Soybean
Soybeans
title Breeding for disease resistance in soybean: a global perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breeding%20for%20disease%20resistance%20in%20soybean:%20a%20global%20perspective&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Lin,%20Feng&rft.date=2022-11-01&rft.volume=135&rft.issue=11&rft.spage=3773&rft.epage=3872&rft.pages=3773-3872&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04101-3&rft_dat=%3Cgale_pubme%3EA729304371%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747539241&rft_id=info:pmid/35790543&rft_galeid=A729304371&rfr_iscdi=true