Breeding for disease resistance in soybean: a global perspective
Key message This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [ Glycine max (L.) Merr.] varieties is a common goal for soybean breeding program...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2022-11, Vol.135 (11), p.3773-3872 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3872 |
---|---|
container_issue | 11 |
container_start_page | 3773 |
container_title | Theoretical and applied genetics |
container_volume | 135 |
creator | Lin, Feng Chhapekar, Sushil Satish Vieira, Caio Canella Da Silva, Marcos Paulo Rojas, Alejandro Lee, Dongho Liu, Nianxi Pardo, Esteban Mariano Lee, Yi-Chen Dong, Zhimin Pinheiro, Jose Baldin Ploper, Leonardo Daniel Rupe, John Chen, Pengyin Wang, Dechun Nguyen, Henry T. |
description | Key message
This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world.
Breeding disease-resistant soybean [
Glycine max
(L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside
rhg1
and
Rhg4
for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of
Rps11
conferring resistance to 80% isolates of
Phytophthora sojae
across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies. |
doi_str_mv | 10.1007/s00122-022-04101-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9729162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729304371</galeid><sourcerecordid>A729304371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVoSbZpv0AOxdBTD05HkmXZPZSkoW0CgUCanoUsjxwFr7SVvKH59pXZ_FsIQQwCze89ZvQIOaBwSAHklwRAGSthrooCLfkOWdCKs5Kxir0hC4AKSiEF2yPvUroBACaA75I9LmQLouILcvQ9IvbOD4UNsehdQp2wiJhcmrQ3WDhfpHDXofZfC10MY-j0WKwwphWayd3ie_LW6jHhh_t7n_z5-ePq5LQ8v_h1dnJ8Xpo8wFRK2XDI1Qsh6oZTVgsUiGCt4A1YRuuec9NRY0RjaWt7xoHprtYApm4byffJt43vat0tsTfop6hHtYpuqeOdCtqp7Y5312oIt6qVrKU1ywaf7g1i-LvGNKmbsI4-z6yYrKTgLavoEzXoEZXzNmQzs3TJqONsxKHicqYOX6Dy6XHpTPBoXX7fEnzeEmRmwn_ToNcpqbPfl9ss27AmhpQi2sclKag5eLUJXsFcc_CKZ9HH59_zKHlIOgN8A6Tc8gPGp_Vfsf0PF3y1SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747539241</pqid></control><display><type>article</type><title>Breeding for disease resistance in soybean: a global perspective</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</creator><creatorcontrib>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</creatorcontrib><description>Key message
This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world.
Breeding disease-resistant soybean [
Glycine max
(L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside
rhg1
and
Rhg4
for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of
Rps11
conferring resistance to 80% isolates of
Phytophthora sojae
across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-022-04101-3</identifier><identifier>PMID: 35790543</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural industry ; Agricultural research ; Agriculture ; Alleles ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Breeding towards Agricultural Sustainability ; Chromosome mapping ; Climate change ; Copy number ; Disease ; Disease resistance ; Disease Resistance - genetics ; Diseases and pests ; DNA Copy Number Variations ; Genetic aspects ; Genomics ; Glycine max ; Glycine max - genetics ; International aspects ; Life Sciences ; Marker-assisted selection ; Methods ; Nomenclature ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant immunology ; Production management ; Production processes ; Quantitative trait loci ; Review ; Reviews ; Soybean ; Soybeans</subject><ispartof>Theoretical and applied genetics, 2022-11, Vol.135 (11), p.3773-3872</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</citedby><cites>FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</cites><orcidid>0000-0001-5492-5963 ; 0000-0003-1294-2081 ; 0000-0001-6777-0307 ; 0000-0001-5428-3753 ; 0000-0002-9802-884X ; 0000-0002-7597-1800 ; 0000-0001-9032-4479 ; 0000-0001-7491-4444 ; 0000-0001-7322-7837 ; 0000-0002-8842-3758 ; 0000-0002-5918-4727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-022-04101-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-022-04101-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35790543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Chhapekar, Sushil Satish</creatorcontrib><creatorcontrib>Vieira, Caio Canella</creatorcontrib><creatorcontrib>Da Silva, Marcos Paulo</creatorcontrib><creatorcontrib>Rojas, Alejandro</creatorcontrib><creatorcontrib>Lee, Dongho</creatorcontrib><creatorcontrib>Liu, Nianxi</creatorcontrib><creatorcontrib>Pardo, Esteban Mariano</creatorcontrib><creatorcontrib>Lee, Yi-Chen</creatorcontrib><creatorcontrib>Dong, Zhimin</creatorcontrib><creatorcontrib>Pinheiro, Jose Baldin</creatorcontrib><creatorcontrib>Ploper, Leonardo Daniel</creatorcontrib><creatorcontrib>Rupe, John</creatorcontrib><creatorcontrib>Chen, Pengyin</creatorcontrib><creatorcontrib>Wang, Dechun</creatorcontrib><creatorcontrib>Nguyen, Henry T.</creatorcontrib><title>Breeding for disease resistance in soybean: a global perspective</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world.
Breeding disease-resistant soybean [
Glycine max
(L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside
rhg1
and
Rhg4
for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of
Rps11
conferring resistance to 80% isolates of
Phytophthora sojae
across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</description><subject>Agricultural industry</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Breeding towards Agricultural Sustainability</subject><subject>Chromosome mapping</subject><subject>Climate change</subject><subject>Copy number</subject><subject>Disease</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>DNA Copy Number Variations</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>International aspects</subject><subject>Life Sciences</subject><subject>Marker-assisted selection</subject><subject>Methods</subject><subject>Nomenclature</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant immunology</subject><subject>Production management</subject><subject>Production processes</subject><subject>Quantitative trait loci</subject><subject>Review</subject><subject>Reviews</subject><subject>Soybean</subject><subject>Soybeans</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9r3DAQxUVoSbZpv0AOxdBTD05HkmXZPZSkoW0CgUCanoUsjxwFr7SVvKH59pXZ_FsIQQwCze89ZvQIOaBwSAHklwRAGSthrooCLfkOWdCKs5Kxir0hC4AKSiEF2yPvUroBACaA75I9LmQLouILcvQ9IvbOD4UNsehdQp2wiJhcmrQ3WDhfpHDXofZfC10MY-j0WKwwphWayd3ie_LW6jHhh_t7n_z5-ePq5LQ8v_h1dnJ8Xpo8wFRK2XDI1Qsh6oZTVgsUiGCt4A1YRuuec9NRY0RjaWt7xoHprtYApm4byffJt43vat0tsTfop6hHtYpuqeOdCtqp7Y5312oIt6qVrKU1ywaf7g1i-LvGNKmbsI4-z6yYrKTgLavoEzXoEZXzNmQzs3TJqONsxKHicqYOX6Dy6XHpTPBoXX7fEnzeEmRmwn_ToNcpqbPfl9ss27AmhpQi2sclKag5eLUJXsFcc_CKZ9HH59_zKHlIOgN8A6Tc8gPGp_Vfsf0PF3y1SQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Lin, Feng</creator><creator>Chhapekar, Sushil Satish</creator><creator>Vieira, Caio Canella</creator><creator>Da Silva, Marcos Paulo</creator><creator>Rojas, Alejandro</creator><creator>Lee, Dongho</creator><creator>Liu, Nianxi</creator><creator>Pardo, Esteban Mariano</creator><creator>Lee, Yi-Chen</creator><creator>Dong, Zhimin</creator><creator>Pinheiro, Jose Baldin</creator><creator>Ploper, Leonardo Daniel</creator><creator>Rupe, John</creator><creator>Chen, Pengyin</creator><creator>Wang, Dechun</creator><creator>Nguyen, Henry T.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5492-5963</orcidid><orcidid>https://orcid.org/0000-0003-1294-2081</orcidid><orcidid>https://orcid.org/0000-0001-6777-0307</orcidid><orcidid>https://orcid.org/0000-0001-5428-3753</orcidid><orcidid>https://orcid.org/0000-0002-9802-884X</orcidid><orcidid>https://orcid.org/0000-0002-7597-1800</orcidid><orcidid>https://orcid.org/0000-0001-9032-4479</orcidid><orcidid>https://orcid.org/0000-0001-7491-4444</orcidid><orcidid>https://orcid.org/0000-0001-7322-7837</orcidid><orcidid>https://orcid.org/0000-0002-8842-3758</orcidid><orcidid>https://orcid.org/0000-0002-5918-4727</orcidid></search><sort><creationdate>20221101</creationdate><title>Breeding for disease resistance in soybean: a global perspective</title><author>Lin, Feng ; Chhapekar, Sushil Satish ; Vieira, Caio Canella ; Da Silva, Marcos Paulo ; Rojas, Alejandro ; Lee, Dongho ; Liu, Nianxi ; Pardo, Esteban Mariano ; Lee, Yi-Chen ; Dong, Zhimin ; Pinheiro, Jose Baldin ; Ploper, Leonardo Daniel ; Rupe, John ; Chen, Pengyin ; Wang, Dechun ; Nguyen, Henry T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-77830783d5556831265e5ee0ff5380f216d33cb1cc58f19fd2302ab6a00c69873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural industry</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Breeding towards Agricultural Sustainability</topic><topic>Chromosome mapping</topic><topic>Climate change</topic><topic>Copy number</topic><topic>Disease</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>DNA Copy Number Variations</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>International aspects</topic><topic>Life Sciences</topic><topic>Marker-assisted selection</topic><topic>Methods</topic><topic>Nomenclature</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant immunology</topic><topic>Production management</topic><topic>Production processes</topic><topic>Quantitative trait loci</topic><topic>Review</topic><topic>Reviews</topic><topic>Soybean</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Feng</creatorcontrib><creatorcontrib>Chhapekar, Sushil Satish</creatorcontrib><creatorcontrib>Vieira, Caio Canella</creatorcontrib><creatorcontrib>Da Silva, Marcos Paulo</creatorcontrib><creatorcontrib>Rojas, Alejandro</creatorcontrib><creatorcontrib>Lee, Dongho</creatorcontrib><creatorcontrib>Liu, Nianxi</creatorcontrib><creatorcontrib>Pardo, Esteban Mariano</creatorcontrib><creatorcontrib>Lee, Yi-Chen</creatorcontrib><creatorcontrib>Dong, Zhimin</creatorcontrib><creatorcontrib>Pinheiro, Jose Baldin</creatorcontrib><creatorcontrib>Ploper, Leonardo Daniel</creatorcontrib><creatorcontrib>Rupe, John</creatorcontrib><creatorcontrib>Chen, Pengyin</creatorcontrib><creatorcontrib>Wang, Dechun</creatorcontrib><creatorcontrib>Nguyen, Henry T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Feng</au><au>Chhapekar, Sushil Satish</au><au>Vieira, Caio Canella</au><au>Da Silva, Marcos Paulo</au><au>Rojas, Alejandro</au><au>Lee, Dongho</au><au>Liu, Nianxi</au><au>Pardo, Esteban Mariano</au><au>Lee, Yi-Chen</au><au>Dong, Zhimin</au><au>Pinheiro, Jose Baldin</au><au>Ploper, Leonardo Daniel</au><au>Rupe, John</au><au>Chen, Pengyin</au><au>Wang, Dechun</au><au>Nguyen, Henry T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breeding for disease resistance in soybean: a global perspective</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>135</volume><issue>11</issue><spage>3773</spage><epage>3872</epage><pages>3773-3872</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world.
Breeding disease-resistant soybean [
Glycine max
(L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside
rhg1
and
Rhg4
for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of
Rps11
conferring resistance to 80% isolates of
Phytophthora sojae
across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35790543</pmid><doi>10.1007/s00122-022-04101-3</doi><tpages>100</tpages><orcidid>https://orcid.org/0000-0001-5492-5963</orcidid><orcidid>https://orcid.org/0000-0003-1294-2081</orcidid><orcidid>https://orcid.org/0000-0001-6777-0307</orcidid><orcidid>https://orcid.org/0000-0001-5428-3753</orcidid><orcidid>https://orcid.org/0000-0002-9802-884X</orcidid><orcidid>https://orcid.org/0000-0002-7597-1800</orcidid><orcidid>https://orcid.org/0000-0001-9032-4479</orcidid><orcidid>https://orcid.org/0000-0001-7491-4444</orcidid><orcidid>https://orcid.org/0000-0001-7322-7837</orcidid><orcidid>https://orcid.org/0000-0002-8842-3758</orcidid><orcidid>https://orcid.org/0000-0002-5918-4727</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2022-11, Vol.135 (11), p.3773-3872 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9729162 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agricultural industry Agricultural research Agriculture Alleles Biochemistry Biomedical and Life Sciences Biotechnology Breeding towards Agricultural Sustainability Chromosome mapping Climate change Copy number Disease Disease resistance Disease Resistance - genetics Diseases and pests DNA Copy Number Variations Genetic aspects Genomics Glycine max Glycine max - genetics International aspects Life Sciences Marker-assisted selection Methods Nomenclature Plant Biochemistry Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Plant immunology Production management Production processes Quantitative trait loci Review Reviews Soybean Soybeans |
title | Breeding for disease resistance in soybean: a global perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breeding%20for%20disease%20resistance%20in%20soybean:%20a%20global%20perspective&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Lin,%20Feng&rft.date=2022-11-01&rft.volume=135&rft.issue=11&rft.spage=3773&rft.epage=3872&rft.pages=3773-3872&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-022-04101-3&rft_dat=%3Cgale_pubme%3EA729304371%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747539241&rft_id=info:pmid/35790543&rft_galeid=A729304371&rfr_iscdi=true |