Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System

Operating room scheduling is a prominent study topic due to its complexity and significance. The increasing number of technical operating room scheduling articles produced each year calls for another evaluation of the literature to enable academics to respond to new trends more quickly. The mathemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2022-11, Vol.2022, p.1938719-15
Hauptverfasser: Hosseini Rad, Reza, Baniasadi, Sahba, Yousefi, Parisa, Morabbi Heravi, Hakimeh, Shaban Al-Ani, Muzhir, Asghari Ilani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1938719
container_title Journal of healthcare engineering
container_volume 2022
creator Hosseini Rad, Reza
Baniasadi, Sahba
Yousefi, Parisa
Morabbi Heravi, Hakimeh
Shaban Al-Ani, Muzhir
Asghari Ilani, Mohsen
description Operating room scheduling is a prominent study topic due to its complexity and significance. The increasing number of technical operating room scheduling articles produced each year calls for another evaluation of the literature to enable academics to respond to new trends more quickly. The mathematical application of a model for the patient admission scheduling issue with stochastic arrivals and departures is the subject of this study. The approach for applying our model to real-world issues is discussed here. We present a solution technique for efficient computing, a numerical model analysis, and examples to demonstrate the methodology. This study looked at the challenge of assigning procedures to operate rooms in the face of ambiguity regarding surgery length and the arrival of emergency patients based on a flexible policy (capacity reservation). We demonstrate that the proposed methods derived from deterministic models are inadequate compared to the answers produced from our stochastic model using simple numerical examples. We also use heuristics to estimate the objective function to build more complicated numerical examples for large-scale issues, demonstrating that our methodology can be applied quickly to real-world situations that often include big information sets.
doi_str_mv 10.1155/2022/1938719
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9726263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753308249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f0ed5a388b9ef1a3593fe00b015a18c9249a5ba8d9595a06aa45de6f1bc8328d3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EolXpjTPyEQm29UectS9I1Yp-SEWsVDhbk3jSGJJ4sZ1We-B_x-1uK7gwF8_IP7951iPkLWcnnCt1KpgQp9xIveTmBTkUrGILIZl5-dQLow7IcUo_WClpZMXla3Ig60rLWplD8nsdMeGU0VGg5xFGvA_xJw0dXYVxM2fIPkww0C_B4eCnW5oDvXLlge-2NPdI14UoIz1zo0-pwPSm7dHNj_A6hmbAkfrpkb1EGHLfQkR6s00ZxzfkVQdDwuP9eUS-n3_-trpcXH-9uFqdXS_aSrC86Bg6BVLrxmDHQSojO2SsYVwB160RlQHVgHZGGQWsBqiUw7rjTaul0E4ekU873c3cjOjaYjjCYDfRjxC3NoC3_95Mvre34c6apahFLYvA-71ADL9mTNmW37Y4DDBhmJMVSyUl08VIQT_u0DaGlCJ2z2s4sw-h2YfQ7D60gr_729oz_BRRAT7sgN5PDu79_-X-AHKzoXY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753308249</pqid></control><display><type>article</type><title>Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Hosseini Rad, Reza ; Baniasadi, Sahba ; Yousefi, Parisa ; Morabbi Heravi, Hakimeh ; Shaban Al-Ani, Muzhir ; Asghari Ilani, Mohsen</creator><contributor>Sharifi, Abbas</contributor><creatorcontrib>Hosseini Rad, Reza ; Baniasadi, Sahba ; Yousefi, Parisa ; Morabbi Heravi, Hakimeh ; Shaban Al-Ani, Muzhir ; Asghari Ilani, Mohsen ; Sharifi, Abbas</creatorcontrib><description>Operating room scheduling is a prominent study topic due to its complexity and significance. The increasing number of technical operating room scheduling articles produced each year calls for another evaluation of the literature to enable academics to respond to new trends more quickly. The mathematical application of a model for the patient admission scheduling issue with stochastic arrivals and departures is the subject of this study. The approach for applying our model to real-world issues is discussed here. We present a solution technique for efficient computing, a numerical model analysis, and examples to demonstrate the methodology. This study looked at the challenge of assigning procedures to operate rooms in the face of ambiguity regarding surgery length and the arrival of emergency patients based on a flexible policy (capacity reservation). We demonstrate that the proposed methods derived from deterministic models are inadequate compared to the answers produced from our stochastic model using simple numerical examples. We also use heuristics to estimate the objective function to build more complicated numerical examples for large-scale issues, demonstrating that our methodology can be applied quickly to real-world situations that often include big information sets.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2022/1938719</identifier><identifier>PMID: 36483659</identifier><language>eng</language><publisher>England: Hindawi</publisher><subject>Delivery of Health Care ; Humans ; Patient Admission</subject><ispartof>Journal of healthcare engineering, 2022-11, Vol.2022, p.1938719-15</ispartof><rights>Copyright © 2022 Reza Hosseini Rad et al.</rights><rights>Copyright © 2022 Reza Hosseini Rad et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f0ed5a388b9ef1a3593fe00b015a18c9249a5ba8d9595a06aa45de6f1bc8328d3</citedby><cites>FETCH-LOGICAL-c420t-f0ed5a388b9ef1a3593fe00b015a18c9249a5ba8d9595a06aa45de6f1bc8328d3</cites><orcidid>0000-0003-0189-6956 ; 0000-0001-8707-9978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726263/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9726263/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36483659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sharifi, Abbas</contributor><creatorcontrib>Hosseini Rad, Reza</creatorcontrib><creatorcontrib>Baniasadi, Sahba</creatorcontrib><creatorcontrib>Yousefi, Parisa</creatorcontrib><creatorcontrib>Morabbi Heravi, Hakimeh</creatorcontrib><creatorcontrib>Shaban Al-Ani, Muzhir</creatorcontrib><creatorcontrib>Asghari Ilani, Mohsen</creatorcontrib><title>Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Operating room scheduling is a prominent study topic due to its complexity and significance. The increasing number of technical operating room scheduling articles produced each year calls for another evaluation of the literature to enable academics to respond to new trends more quickly. The mathematical application of a model for the patient admission scheduling issue with stochastic arrivals and departures is the subject of this study. The approach for applying our model to real-world issues is discussed here. We present a solution technique for efficient computing, a numerical model analysis, and examples to demonstrate the methodology. This study looked at the challenge of assigning procedures to operate rooms in the face of ambiguity regarding surgery length and the arrival of emergency patients based on a flexible policy (capacity reservation). We demonstrate that the proposed methods derived from deterministic models are inadequate compared to the answers produced from our stochastic model using simple numerical examples. We also use heuristics to estimate the objective function to build more complicated numerical examples for large-scale issues, demonstrating that our methodology can be applied quickly to real-world situations that often include big information sets.</description><subject>Delivery of Health Care</subject><subject>Humans</subject><subject>Patient Admission</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EolXpjTPyEQm29UectS9I1Yp-SEWsVDhbk3jSGJJ4sZ1We-B_x-1uK7gwF8_IP7951iPkLWcnnCt1KpgQp9xIveTmBTkUrGILIZl5-dQLow7IcUo_WClpZMXla3Ig60rLWplD8nsdMeGU0VGg5xFGvA_xJw0dXYVxM2fIPkww0C_B4eCnW5oDvXLlge-2NPdI14UoIz1zo0-pwPSm7dHNj_A6hmbAkfrpkb1EGHLfQkR6s00ZxzfkVQdDwuP9eUS-n3_-trpcXH-9uFqdXS_aSrC86Bg6BVLrxmDHQSojO2SsYVwB160RlQHVgHZGGQWsBqiUw7rjTaul0E4ekU873c3cjOjaYjjCYDfRjxC3NoC3_95Mvre34c6apahFLYvA-71ADL9mTNmW37Y4DDBhmJMVSyUl08VIQT_u0DaGlCJ2z2s4sw-h2YfQ7D60gr_729oz_BRRAT7sgN5PDu79_-X-AHKzoXY</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Hosseini Rad, Reza</creator><creator>Baniasadi, Sahba</creator><creator>Yousefi, Parisa</creator><creator>Morabbi Heravi, Hakimeh</creator><creator>Shaban Al-Ani, Muzhir</creator><creator>Asghari Ilani, Mohsen</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0189-6956</orcidid><orcidid>https://orcid.org/0000-0001-8707-9978</orcidid></search><sort><creationdate>20221129</creationdate><title>Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System</title><author>Hosseini Rad, Reza ; Baniasadi, Sahba ; Yousefi, Parisa ; Morabbi Heravi, Hakimeh ; Shaban Al-Ani, Muzhir ; Asghari Ilani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f0ed5a388b9ef1a3593fe00b015a18c9249a5ba8d9595a06aa45de6f1bc8328d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delivery of Health Care</topic><topic>Humans</topic><topic>Patient Admission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini Rad, Reza</creatorcontrib><creatorcontrib>Baniasadi, Sahba</creatorcontrib><creatorcontrib>Yousefi, Parisa</creatorcontrib><creatorcontrib>Morabbi Heravi, Hakimeh</creatorcontrib><creatorcontrib>Shaban Al-Ani, Muzhir</creatorcontrib><creatorcontrib>Asghari Ilani, Mohsen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseini Rad, Reza</au><au>Baniasadi, Sahba</au><au>Yousefi, Parisa</au><au>Morabbi Heravi, Hakimeh</au><au>Shaban Al-Ani, Muzhir</au><au>Asghari Ilani, Mohsen</au><au>Sharifi, Abbas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2022-11-29</date><risdate>2022</risdate><volume>2022</volume><spage>1938719</spage><epage>15</epage><pages>1938719-15</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Operating room scheduling is a prominent study topic due to its complexity and significance. The increasing number of technical operating room scheduling articles produced each year calls for another evaluation of the literature to enable academics to respond to new trends more quickly. The mathematical application of a model for the patient admission scheduling issue with stochastic arrivals and departures is the subject of this study. The approach for applying our model to real-world issues is discussed here. We present a solution technique for efficient computing, a numerical model analysis, and examples to demonstrate the methodology. This study looked at the challenge of assigning procedures to operate rooms in the face of ambiguity regarding surgery length and the arrival of emergency patients based on a flexible policy (capacity reservation). We demonstrate that the proposed methods derived from deterministic models are inadequate compared to the answers produced from our stochastic model using simple numerical examples. We also use heuristics to estimate the objective function to build more complicated numerical examples for large-scale issues, demonstrating that our methodology can be applied quickly to real-world situations that often include big information sets.</abstract><cop>England</cop><pub>Hindawi</pub><pmid>36483659</pmid><doi>10.1155/2022/1938719</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0189-6956</orcidid><orcidid>https://orcid.org/0000-0001-8707-9978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2022-11, Vol.2022, p.1938719-15
issn 2040-2295
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9726263
source MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Delivery of Health Care
Humans
Patient Admission
title Presented a Framework of Computational Modeling to Identify the Patient Admission Scheduling Problem in the Healthcare System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Presented%20a%20Framework%20of%20Computational%20Modeling%20to%20Identify%20the%20Patient%20Admission%20Scheduling%20Problem%20in%20the%20Healthcare%20System&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Hosseini%20Rad,%20Reza&rft.date=2022-11-29&rft.volume=2022&rft.spage=1938719&rft.epage=15&rft.pages=1938719-15&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2022/1938719&rft_dat=%3Cproquest_pubme%3E2753308249%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753308249&rft_id=info:pmid/36483659&rfr_iscdi=true