Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques
The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environmen...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-06, Vol.55 (11), p.7237-7245 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7245 |
---|---|
container_issue | 11 |
container_start_page | 7237 |
container_title | Environmental science & technology |
container_volume | 55 |
creator | Charbonnet, Joseph A Rodowa, Alix E Joseph, Nayantara T Guelfo, Jennifer L Field, Jennifer A Jones, Gerrad D Higgins, Christopher P Helbling, Damian E Houtz, Erika F |
description | The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model. Converging lines of evidence used to differentiate PFAS sources include: identification of PFASs strongly associated with unique sources; the ratios of PFAS homologues, classes, and isomers at a contaminated site; and a site’s hydrogeochemical conditions. As the field of PFAS source tracking progresses, the development of new PFAS analytical standards and the wider availability of high-resolution mass spectral data will enhance currently available analytical capabilities. In addition, multivariate computational tools, including unsupervised (i.e., exploratory) and supervised (i.e., predictive) machine learning techniques, may lead to novel insights that define a targeted list of PFASs that will be useful for environmental PFAS source tracking. In this Perspective, we identify the current tools available and principal developments necessary to enable greater confidence in environmental source tracking to identify and apportion PFAS sources. |
doi_str_mv | 10.1021/acs.est.0c08506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9724633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543836634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-1acc7f9be9a729c13262bd6cf95a383dca3458cede7ad466bb82f92408025eb73</originalsourceid><addsrcrecordid>eNp1kc9LHDEYhkOp1K167q0Eeiyz5sckM9NDQRZXBUGhCt7CN5mMG51NbJKx3UP_92bddamHngLJ8z3fS16EPlEypYTRY9BxamKaEk1qQeQ7NKGCkULUgr5HE0IoLxou7_bRxxgfCCGMk_oD2ue8qXlFywn6c-qebfBuaVyCAf_wY9AG3wTQj9bdY9_jaxMKDK7D135Y9cPog4fhcZXZsY0JnDYR_7JpYR0GPPfBuGg1nnmXzO_0Dc_GkK_Si2E-pjFku9ELZ3-OJh6ivR6GaI625wG6nZ_ezM6Ly6uzi9nJZQGlqFJBQeuqb1rTQMUaTTmTrO2k7hsBvOadBl6KWpvOVNCVUrZtzfqGlaQmTJi24gfo-8b7NLZL0-kcKMCgnoJdQlgpD1a9fXF2oe79s2oqVkrOs-DLVhD8OnhSD_mnXM6smChzBil5manjDaWDjzGYfreBErXuS-W-1Hp621ee-PxvsB3_WlAGvm6A9eRu5_90fwFVKKSr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543836634</pqid></control><display><type>article</type><title>Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques</title><source>ACS Publications</source><source>MEDLINE</source><creator>Charbonnet, Joseph A ; Rodowa, Alix E ; Joseph, Nayantara T ; Guelfo, Jennifer L ; Field, Jennifer A ; Jones, Gerrad D ; Higgins, Christopher P ; Helbling, Damian E ; Houtz, Erika F</creator><creatorcontrib>Charbonnet, Joseph A ; Rodowa, Alix E ; Joseph, Nayantara T ; Guelfo, Jennifer L ; Field, Jennifer A ; Jones, Gerrad D ; Higgins, Christopher P ; Helbling, Damian E ; Houtz, Erika F</creatorcontrib><description>The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model. Converging lines of evidence used to differentiate PFAS sources include: identification of PFASs strongly associated with unique sources; the ratios of PFAS homologues, classes, and isomers at a contaminated site; and a site’s hydrogeochemical conditions. As the field of PFAS source tracking progresses, the development of new PFAS analytical standards and the wider availability of high-resolution mass spectral data will enhance currently available analytical capabilities. In addition, multivariate computational tools, including unsupervised (i.e., exploratory) and supervised (i.e., predictive) machine learning techniques, may lead to novel insights that define a targeted list of PFASs that will be useful for environmental PFAS source tracking. In this Perspective, we identify the current tools available and principal developments necessary to enable greater confidence in environmental source tracking to identify and apportion PFAS sources.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c08506</identifier><identifier>PMID: 33983714</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer applications ; Contamination ; Fluorocarbons - analysis ; Forensic science ; Homology ; Hydrogeochemistry ; Isomers ; Learning algorithms ; Machine learning ; Mathematical analysis ; Multivariate analysis ; Perfluoroalkyl & polyfluoroalkyl substances ; Software ; Tracking ; Water Pollutants, Chemical - analysis</subject><ispartof>Environmental science & technology, 2021-06, Vol.55 (11), p.7237-7245</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-1acc7f9be9a729c13262bd6cf95a383dca3458cede7ad466bb82f92408025eb73</citedby><cites>FETCH-LOGICAL-a457t-1acc7f9be9a729c13262bd6cf95a383dca3458cede7ad466bb82f92408025eb73</cites><orcidid>0000-0003-2588-145X ; 0000-0002-6623-1173 ; 0000-0003-4461-228X ; 0000-0002-2650-0981 ; 0000-0001-6220-8673 ; 0000-0002-9346-4693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c08506$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c08506$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33983714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charbonnet, Joseph A</creatorcontrib><creatorcontrib>Rodowa, Alix E</creatorcontrib><creatorcontrib>Joseph, Nayantara T</creatorcontrib><creatorcontrib>Guelfo, Jennifer L</creatorcontrib><creatorcontrib>Field, Jennifer A</creatorcontrib><creatorcontrib>Jones, Gerrad D</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Helbling, Damian E</creatorcontrib><creatorcontrib>Houtz, Erika F</creatorcontrib><title>Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model. Converging lines of evidence used to differentiate PFAS sources include: identification of PFASs strongly associated with unique sources; the ratios of PFAS homologues, classes, and isomers at a contaminated site; and a site’s hydrogeochemical conditions. As the field of PFAS source tracking progresses, the development of new PFAS analytical standards and the wider availability of high-resolution mass spectral data will enhance currently available analytical capabilities. In addition, multivariate computational tools, including unsupervised (i.e., exploratory) and supervised (i.e., predictive) machine learning techniques, may lead to novel insights that define a targeted list of PFASs that will be useful for environmental PFAS source tracking. In this Perspective, we identify the current tools available and principal developments necessary to enable greater confidence in environmental source tracking to identify and apportion PFAS sources.</description><subject>Computer applications</subject><subject>Contamination</subject><subject>Fluorocarbons - analysis</subject><subject>Forensic science</subject><subject>Homology</subject><subject>Hydrogeochemistry</subject><subject>Isomers</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Multivariate analysis</subject><subject>Perfluoroalkyl & polyfluoroalkyl substances</subject><subject>Software</subject><subject>Tracking</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9LHDEYhkOp1K167q0Eeiyz5sckM9NDQRZXBUGhCt7CN5mMG51NbJKx3UP_92bddamHngLJ8z3fS16EPlEypYTRY9BxamKaEk1qQeQ7NKGCkULUgr5HE0IoLxou7_bRxxgfCCGMk_oD2ue8qXlFywn6c-qebfBuaVyCAf_wY9AG3wTQj9bdY9_jaxMKDK7D135Y9cPog4fhcZXZsY0JnDYR_7JpYR0GPPfBuGg1nnmXzO_0Dc_GkK_Si2E-pjFku9ELZ3-OJh6ivR6GaI625wG6nZ_ezM6Ly6uzi9nJZQGlqFJBQeuqb1rTQMUaTTmTrO2k7hsBvOadBl6KWpvOVNCVUrZtzfqGlaQmTJi24gfo-8b7NLZL0-kcKMCgnoJdQlgpD1a9fXF2oe79s2oqVkrOs-DLVhD8OnhSD_mnXM6smChzBil5manjDaWDjzGYfreBErXuS-W-1Hp621ee-PxvsB3_WlAGvm6A9eRu5_90fwFVKKSr</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Charbonnet, Joseph A</creator><creator>Rodowa, Alix E</creator><creator>Joseph, Nayantara T</creator><creator>Guelfo, Jennifer L</creator><creator>Field, Jennifer A</creator><creator>Jones, Gerrad D</creator><creator>Higgins, Christopher P</creator><creator>Helbling, Damian E</creator><creator>Houtz, Erika F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2588-145X</orcidid><orcidid>https://orcid.org/0000-0002-6623-1173</orcidid><orcidid>https://orcid.org/0000-0003-4461-228X</orcidid><orcidid>https://orcid.org/0000-0002-2650-0981</orcidid><orcidid>https://orcid.org/0000-0001-6220-8673</orcidid><orcidid>https://orcid.org/0000-0002-9346-4693</orcidid></search><sort><creationdate>20210601</creationdate><title>Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques</title><author>Charbonnet, Joseph A ; Rodowa, Alix E ; Joseph, Nayantara T ; Guelfo, Jennifer L ; Field, Jennifer A ; Jones, Gerrad D ; Higgins, Christopher P ; Helbling, Damian E ; Houtz, Erika F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-1acc7f9be9a729c13262bd6cf95a383dca3458cede7ad466bb82f92408025eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer applications</topic><topic>Contamination</topic><topic>Fluorocarbons - analysis</topic><topic>Forensic science</topic><topic>Homology</topic><topic>Hydrogeochemistry</topic><topic>Isomers</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Multivariate analysis</topic><topic>Perfluoroalkyl & polyfluoroalkyl substances</topic><topic>Software</topic><topic>Tracking</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charbonnet, Joseph A</creatorcontrib><creatorcontrib>Rodowa, Alix E</creatorcontrib><creatorcontrib>Joseph, Nayantara T</creatorcontrib><creatorcontrib>Guelfo, Jennifer L</creatorcontrib><creatorcontrib>Field, Jennifer A</creatorcontrib><creatorcontrib>Jones, Gerrad D</creatorcontrib><creatorcontrib>Higgins, Christopher P</creatorcontrib><creatorcontrib>Helbling, Damian E</creatorcontrib><creatorcontrib>Houtz, Erika F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charbonnet, Joseph A</au><au>Rodowa, Alix E</au><au>Joseph, Nayantara T</au><au>Guelfo, Jennifer L</au><au>Field, Jennifer A</au><au>Jones, Gerrad D</au><au>Higgins, Christopher P</au><au>Helbling, Damian E</au><au>Houtz, Erika F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>55</volume><issue>11</issue><spage>7237</spage><epage>7245</epage><pages>7237-7245</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model. Converging lines of evidence used to differentiate PFAS sources include: identification of PFASs strongly associated with unique sources; the ratios of PFAS homologues, classes, and isomers at a contaminated site; and a site’s hydrogeochemical conditions. As the field of PFAS source tracking progresses, the development of new PFAS analytical standards and the wider availability of high-resolution mass spectral data will enhance currently available analytical capabilities. In addition, multivariate computational tools, including unsupervised (i.e., exploratory) and supervised (i.e., predictive) machine learning techniques, may lead to novel insights that define a targeted list of PFASs that will be useful for environmental PFAS source tracking. In this Perspective, we identify the current tools available and principal developments necessary to enable greater confidence in environmental source tracking to identify and apportion PFAS sources.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33983714</pmid><doi>10.1021/acs.est.0c08506</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2588-145X</orcidid><orcidid>https://orcid.org/0000-0002-6623-1173</orcidid><orcidid>https://orcid.org/0000-0003-4461-228X</orcidid><orcidid>https://orcid.org/0000-0002-2650-0981</orcidid><orcidid>https://orcid.org/0000-0001-6220-8673</orcidid><orcidid>https://orcid.org/0000-0002-9346-4693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2021-06, Vol.55 (11), p.7237-7245 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9724633 |
source | ACS Publications; MEDLINE |
subjects | Computer applications Contamination Fluorocarbons - analysis Forensic science Homology Hydrogeochemistry Isomers Learning algorithms Machine learning Mathematical analysis Multivariate analysis Perfluoroalkyl & polyfluoroalkyl substances Software Tracking Water Pollutants, Chemical - analysis |
title | Environmental Source Tracking of Per- and Polyfluoroalkyl Substances within a Forensic Context: Current and Future Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20Source%20Tracking%20of%20Per-%20and%20Polyfluoroalkyl%20Substances%20within%20a%20Forensic%20Context:%20Current%20and%20Future%20Techniques&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Charbonnet,%20Joseph%20A&rft.date=2021-06-01&rft.volume=55&rft.issue=11&rft.spage=7237&rft.epage=7245&rft.pages=7237-7245&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c08506&rft_dat=%3Cproquest_pubme%3E2543836634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543836634&rft_id=info:pmid/33983714&rfr_iscdi=true |