Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches
Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitr...
Gespeichert in:
Veröffentlicht in: | ISME Communications 2021-03, Vol.1 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ISME Communications |
container_volume | 1 |
creator | Shafiee, Roxana T Diver, Poppy J Snow, Joseph T Zhang, Qiong Rickaby, Rosalind E M |
description | Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time. |
doi_str_mv | 10.1038/s43705-021-00001-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9723733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887476533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-bbcf3e2600f914619c7610180fceff7998ab83289a6ed22db3e1763491dca10e3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhosouKz-AU8FL16qmaRt0osgi1-geNFzmKZTN7JNatKK_nu7H4iaywTm4WVmniQ5AXYOTKiLmAvJioxxyNj0IJN7yYxLwbISCtj_9T9MjmN8mxhegOAAs-T5EYN1lGLXeWcx85-2sdG61xSDWSJhiq5JazQDBYupN2bsv9IJGawzQ2qDdxvC-L6nkDprlhSPkoMWV5GOd3WevNxcPy_usoen2_vF1UNmhJBDVtemFcRLxtoK8hIqI0tgoFhrqG1lVSmsleCqwpIazptaEMhS5BU0BoGRmCeX29x-rDtqDLkh4Er3wXYYvrRHq_92nF3qV_-hK8mFFGIKONsFBP8-Uhx0Z6Oh1Qod-TFqrpTMZVls0NN_6Jsfg5vW0-vzilwVqpoovqVM8DEGan-GAabXsvRWlp5k6Y0sLcU3BAyILg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730348589</pqid></control><display><type>article</type><title>Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Shafiee, Roxana T ; Diver, Poppy J ; Snow, Joseph T ; Zhang, Qiong ; Rickaby, Rosalind E M</creator><creatorcontrib>Shafiee, Roxana T ; Diver, Poppy J ; Snow, Joseph T ; Zhang, Qiong ; Rickaby, Rosalind E M</creatorcontrib><description>Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.</description><identifier>ISSN: 2730-6151</identifier><identifier>EISSN: 2730-6151</identifier><identifier>DOI: 10.1038/s43705-021-00001-7</identifier><language>eng</language><publisher>London: Springer Nature B.V</publisher><subject>Acids ; Affinity ; Ammonia ; Ammonium ; Archaea ; Availability ; Bacteria ; Binding sites ; Copper ; Experiments ; Heavy metals ; Iron ; Laboratories ; Marine environment ; Metals ; Nitrification ; Oceans ; Oxidation ; Phylogeny ; Physiology ; Proteomics ; Pure culture ; Statistical significance ; Toxicity ; Trace metals</subject><ispartof>ISME Communications, 2021-03, Vol.1 (1), p.1-1</ispartof><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-bbcf3e2600f914619c7610180fceff7998ab83289a6ed22db3e1763491dca10e3</citedby><cites>FETCH-LOGICAL-c337t-bbcf3e2600f914619c7610180fceff7998ab83289a6ed22db3e1763491dca10e3</cites><orcidid>0000-0001-5605-1198 ; 0000-0002-9007-8025 ; 0000-0002-9949-8392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Shafiee, Roxana T</creatorcontrib><creatorcontrib>Diver, Poppy J</creatorcontrib><creatorcontrib>Snow, Joseph T</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Rickaby, Rosalind E M</creatorcontrib><title>Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches</title><title>ISME Communications</title><description>Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.</description><subject>Acids</subject><subject>Affinity</subject><subject>Ammonia</subject><subject>Ammonium</subject><subject>Archaea</subject><subject>Availability</subject><subject>Bacteria</subject><subject>Binding sites</subject><subject>Copper</subject><subject>Experiments</subject><subject>Heavy metals</subject><subject>Iron</subject><subject>Laboratories</subject><subject>Marine environment</subject><subject>Metals</subject><subject>Nitrification</subject><subject>Oceans</subject><subject>Oxidation</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Proteomics</subject><subject>Pure culture</subject><subject>Statistical significance</subject><subject>Toxicity</subject><subject>Trace metals</subject><issn>2730-6151</issn><issn>2730-6151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkU1LxDAQhosouKz-AU8FL16qmaRt0osgi1-geNFzmKZTN7JNatKK_nu7H4iaywTm4WVmniQ5AXYOTKiLmAvJioxxyNj0IJN7yYxLwbISCtj_9T9MjmN8mxhegOAAs-T5EYN1lGLXeWcx85-2sdG61xSDWSJhiq5JazQDBYupN2bsv9IJGawzQ2qDdxvC-L6nkDprlhSPkoMWV5GOd3WevNxcPy_usoen2_vF1UNmhJBDVtemFcRLxtoK8hIqI0tgoFhrqG1lVSmsleCqwpIazptaEMhS5BU0BoGRmCeX29x-rDtqDLkh4Er3wXYYvrRHq_92nF3qV_-hK8mFFGIKONsFBP8-Uhx0Z6Oh1Qod-TFqrpTMZVls0NN_6Jsfg5vW0-vzilwVqpoovqVM8DEGan-GAabXsvRWlp5k6Y0sLcU3BAyILg</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>Shafiee, Roxana T</creator><creator>Diver, Poppy J</creator><creator>Snow, Joseph T</creator><creator>Zhang, Qiong</creator><creator>Rickaby, Rosalind E M</creator><general>Springer Nature B.V</general><general>Nature Publishing Group UK</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5605-1198</orcidid><orcidid>https://orcid.org/0000-0002-9007-8025</orcidid><orcidid>https://orcid.org/0000-0002-9949-8392</orcidid></search><sort><creationdate>20210324</creationdate><title>Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches</title><author>Shafiee, Roxana T ; Diver, Poppy J ; Snow, Joseph T ; Zhang, Qiong ; Rickaby, Rosalind E M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-bbcf3e2600f914619c7610180fceff7998ab83289a6ed22db3e1763491dca10e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Affinity</topic><topic>Ammonia</topic><topic>Ammonium</topic><topic>Archaea</topic><topic>Availability</topic><topic>Bacteria</topic><topic>Binding sites</topic><topic>Copper</topic><topic>Experiments</topic><topic>Heavy metals</topic><topic>Iron</topic><topic>Laboratories</topic><topic>Marine environment</topic><topic>Metals</topic><topic>Nitrification</topic><topic>Oceans</topic><topic>Oxidation</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Proteomics</topic><topic>Pure culture</topic><topic>Statistical significance</topic><topic>Toxicity</topic><topic>Trace metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Roxana T</creatorcontrib><creatorcontrib>Diver, Poppy J</creatorcontrib><creatorcontrib>Snow, Joseph T</creatorcontrib><creatorcontrib>Zhang, Qiong</creatorcontrib><creatorcontrib>Rickaby, Rosalind E M</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ISME Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiee, Roxana T</au><au>Diver, Poppy J</au><au>Snow, Joseph T</au><au>Zhang, Qiong</au><au>Rickaby, Rosalind E M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches</atitle><jtitle>ISME Communications</jtitle><date>2021-03-24</date><risdate>2021</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2730-6151</issn><eissn>2730-6151</eissn><abstract>Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.</abstract><cop>London</cop><pub>Springer Nature B.V</pub><doi>10.1038/s43705-021-00001-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5605-1198</orcidid><orcidid>https://orcid.org/0000-0002-9007-8025</orcidid><orcidid>https://orcid.org/0000-0002-9949-8392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2730-6151 |
ispartof | ISME Communications, 2021-03, Vol.1 (1), p.1-1 |
issn | 2730-6151 2730-6151 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9723733 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | Acids Affinity Ammonia Ammonium Archaea Availability Bacteria Binding sites Copper Experiments Heavy metals Iron Laboratories Marine environment Metals Nitrification Oceans Oxidation Phylogeny Physiology Proteomics Pure culture Statistical significance Toxicity Trace metals |
title | Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20ammonia-oxidising%20archaea%20and%20bacteria%20occupy%20distinct%20iron%20and%20copper%20niches&rft.jtitle=ISME%20Communications&rft.au=Shafiee,%20Roxana%20T&rft.date=2021-03-24&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2730-6151&rft.eissn=2730-6151&rft_id=info:doi/10.1038/s43705-021-00001-7&rft_dat=%3Cproquest_pubme%3E2887476533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730348589&rft_id=info:pmid/&rfr_iscdi=true |