PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53

Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (47), p.1-12
Hauptverfasser: de Celis, Maria F. Rubin, Garcia-Martin, Ruben, Syed, Ismail, Lee, Jennifer, Aguayo-Mazzucato, Cristina, Bonner-Weir, Susan, Kahn, Barbara B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 47
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator de Celis, Maria F. Rubin
Garcia-Martin, Ruben
Syed, Ismail
Lee, Jennifer
Aguayo-Mazzucato, Cristina
Bonner-Weir, Susan
Kahn, Barbara B.
description Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.
doi_str_mv 10.1073/pnas.2206923119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9704710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27208559</jstor_id><sourcerecordid>27208559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcu6Y7t2I4vSKuqUKRWIAFny3Gc3awSO9gOKv89XrYsH6eR5_3myU8PoRcELglItp69SZeUglCUEaIeoRUBRSpRK3iMVgBUVk1N63P0NKU9ACjewBN0zgSTHARboftPm5vPm4Sj6xbrsHXjuIwm4uS8S9b5sjO-w3MM2dmMZ-NtdCYPFrcum198wn0ME57Kuw1jUVKOLiWcdzEs212x3hbLPASPQ4_vuomuZ86eobPejMk9f5gX6Ou76y9XN9Xtx_cfrja3la1rlivLXc8FMcCFbaUQjVFtrxrJuHDcGNtzI0HWUtWMEQGsl7LtW1FuLeOmU-wCvT36zks7ua5EytGMeo7DZOIPHcyg_1X8sNPb8F0rCbUkUAzePBjE8G1xKetpSIfcxruwJE0lE0JIQnlBX_-H7sMSfYl3oJRUUtRNodZHysaQUnT96TME9KFVfWhV_2m1XLz6O8OJ_11jAV4egX3KIZ50Kik0nCv2EyqjqP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739797648</pqid></control><display><type>article</type><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</creator><creatorcontrib>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</creatorcontrib><description>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2206923119</identifier><identifier>PMID: 36375063</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Autoimmune diseases ; Autophagy ; Beta cells ; Biological Sciences ; Cellular Senescence - genetics ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - genetics ; Diabetes Mellitus, Type 1 - prevention &amp; control ; DNA repair ; Gene expression ; Genes ; Glutathione ; Health risks ; Homeostasis ; Humans ; Insulin-Secreting Cells ; Lipids ; MDM2 protein ; Metabolism ; Mice ; Mice, Inbred NOD ; p53 Protein ; Palmitic acid ; Palmitic Acid - pharmacology ; Pancreas ; Proto-Oncogene Proteins c-mdm2 - genetics ; Risk reduction ; Senescence ; Stearic Acids ; Stress, Physiological ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (47), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</citedby><cites>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</cites><orcidid>0000-0001-5402-1382 ; 0000-0003-4682-0656 ; 0000-0002-4027-0000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704710/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704710/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36375063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Celis, Maria F. Rubin</creatorcontrib><creatorcontrib>Garcia-Martin, Ruben</creatorcontrib><creatorcontrib>Syed, Ismail</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Aguayo-Mazzucato, Cristina</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><creatorcontrib>Kahn, Barbara B.</creatorcontrib><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</description><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Autophagy</subject><subject>Beta cells</subject><subject>Biological Sciences</subject><subject>Cellular Senescence - genetics</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - genetics</subject><subject>Diabetes Mellitus, Type 1 - prevention &amp; control</subject><subject>DNA repair</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Health risks</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin-Secreting Cells</subject><subject>Lipids</subject><subject>MDM2 protein</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>p53 Protein</subject><subject>Palmitic acid</subject><subject>Palmitic Acid - pharmacology</subject><subject>Pancreas</subject><subject>Proto-Oncogene Proteins c-mdm2 - genetics</subject><subject>Risk reduction</subject><subject>Senescence</subject><subject>Stearic Acids</subject><subject>Stress, Physiological</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcu6Y7t2I4vSKuqUKRWIAFny3Gc3awSO9gOKv89XrYsH6eR5_3myU8PoRcELglItp69SZeUglCUEaIeoRUBRSpRK3iMVgBUVk1N63P0NKU9ACjewBN0zgSTHARboftPm5vPm4Sj6xbrsHXjuIwm4uS8S9b5sjO-w3MM2dmMZ-NtdCYPFrcum198wn0ME57Kuw1jUVKOLiWcdzEs212x3hbLPASPQ4_vuomuZ86eobPejMk9f5gX6Ou76y9XN9Xtx_cfrja3la1rlivLXc8FMcCFbaUQjVFtrxrJuHDcGNtzI0HWUtWMEQGsl7LtW1FuLeOmU-wCvT36zks7ua5EytGMeo7DZOIPHcyg_1X8sNPb8F0rCbUkUAzePBjE8G1xKetpSIfcxruwJE0lE0JIQnlBX_-H7sMSfYl3oJRUUtRNodZHysaQUnT96TME9KFVfWhV_2m1XLz6O8OJ_11jAV4egX3KIZ50Kik0nCv2EyqjqP0</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>de Celis, Maria F. Rubin</creator><creator>Garcia-Martin, Ruben</creator><creator>Syed, Ismail</creator><creator>Lee, Jennifer</creator><creator>Aguayo-Mazzucato, Cristina</creator><creator>Bonner-Weir, Susan</creator><creator>Kahn, Barbara B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5402-1382</orcidid><orcidid>https://orcid.org/0000-0003-4682-0656</orcidid><orcidid>https://orcid.org/0000-0002-4027-0000</orcidid></search><sort><creationdate>20221122</creationdate><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><author>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Autophagy</topic><topic>Beta cells</topic><topic>Biological Sciences</topic><topic>Cellular Senescence - genetics</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - genetics</topic><topic>Diabetes Mellitus, Type 1 - prevention &amp; control</topic><topic>DNA repair</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Health risks</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin-Secreting Cells</topic><topic>Lipids</topic><topic>MDM2 protein</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>p53 Protein</topic><topic>Palmitic acid</topic><topic>Palmitic Acid - pharmacology</topic><topic>Pancreas</topic><topic>Proto-Oncogene Proteins c-mdm2 - genetics</topic><topic>Risk reduction</topic><topic>Senescence</topic><topic>Stearic Acids</topic><topic>Stress, Physiological</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Celis, Maria F. Rubin</creatorcontrib><creatorcontrib>Garcia-Martin, Ruben</creatorcontrib><creatorcontrib>Syed, Ismail</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Aguayo-Mazzucato, Cristina</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><creatorcontrib>Kahn, Barbara B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Celis, Maria F. Rubin</au><au>Garcia-Martin, Ruben</au><au>Syed, Ismail</au><au>Lee, Jennifer</au><au>Aguayo-Mazzucato, Cristina</au><au>Bonner-Weir, Susan</au><au>Kahn, Barbara B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-22</date><risdate>2022</risdate><volume>119</volume><issue>47</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36375063</pmid><doi>10.1073/pnas.2206923119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5402-1382</orcidid><orcidid>https://orcid.org/0000-0003-4682-0656</orcidid><orcidid>https://orcid.org/0000-0002-4027-0000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (47), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9704710
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Autoimmune diseases
Autophagy
Beta cells
Biological Sciences
Cellular Senescence - genetics
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - genetics
Diabetes Mellitus, Type 1 - prevention & control
DNA repair
Gene expression
Genes
Glutathione
Health risks
Homeostasis
Humans
Insulin-Secreting Cells
Lipids
MDM2 protein
Metabolism
Mice
Mice, Inbred NOD
p53 Protein
Palmitic acid
Palmitic Acid - pharmacology
Pancreas
Proto-Oncogene Proteins c-mdm2 - genetics
Risk reduction
Senescence
Stearic Acids
Stress, Physiological
Tumor Suppressor Protein p53 - genetics
title PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAHSAs%20reduce%20cellular%20senescence%20and%20protect%20pancreatic%20beta%20cells%20from%20metabolic%20stress%20through%20regulation%20of%20Mdm2/p53&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=de%20Celis,%20Maria%20F.%20Rubin&rft.date=2022-11-22&rft.volume=119&rft.issue=47&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2206923119&rft_dat=%3Cjstor_pubme%3E27208559%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739797648&rft_id=info:pmid/36375063&rft_jstor_id=27208559&rfr_iscdi=true