PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53
Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (47), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 47 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | de Celis, Maria F. Rubin Garcia-Martin, Ruben Syed, Ismail Lee, Jennifer Aguayo-Mazzucato, Cristina Bonner-Weir, Susan Kahn, Barbara B. |
description | Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans. |
doi_str_mv | 10.1073/pnas.2206923119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9704710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27208559</jstor_id><sourcerecordid>27208559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcu6Y7t2I4vSKuqUKRWIAFny3Gc3awSO9gOKv89XrYsH6eR5_3myU8PoRcELglItp69SZeUglCUEaIeoRUBRSpRK3iMVgBUVk1N63P0NKU9ACjewBN0zgSTHARboftPm5vPm4Sj6xbrsHXjuIwm4uS8S9b5sjO-w3MM2dmMZ-NtdCYPFrcum198wn0ME57Kuw1jUVKOLiWcdzEs212x3hbLPASPQ4_vuomuZ86eobPejMk9f5gX6Ou76y9XN9Xtx_cfrja3la1rlivLXc8FMcCFbaUQjVFtrxrJuHDcGNtzI0HWUtWMEQGsl7LtW1FuLeOmU-wCvT36zks7ua5EytGMeo7DZOIPHcyg_1X8sNPb8F0rCbUkUAzePBjE8G1xKetpSIfcxruwJE0lE0JIQnlBX_-H7sMSfYl3oJRUUtRNodZHysaQUnT96TME9KFVfWhV_2m1XLz6O8OJ_11jAV4egX3KIZ50Kik0nCv2EyqjqP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739797648</pqid></control><display><type>article</type><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</creator><creatorcontrib>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</creatorcontrib><description>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2206923119</identifier><identifier>PMID: 36375063</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Autoimmune diseases ; Autophagy ; Beta cells ; Biological Sciences ; Cellular Senescence - genetics ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Type 1 - genetics ; Diabetes Mellitus, Type 1 - prevention & control ; DNA repair ; Gene expression ; Genes ; Glutathione ; Health risks ; Homeostasis ; Humans ; Insulin-Secreting Cells ; Lipids ; MDM2 protein ; Metabolism ; Mice ; Mice, Inbred NOD ; p53 Protein ; Palmitic acid ; Palmitic Acid - pharmacology ; Pancreas ; Proto-Oncogene Proteins c-mdm2 - genetics ; Risk reduction ; Senescence ; Stearic Acids ; Stress, Physiological ; Tumor Suppressor Protein p53 - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (47), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 22, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</citedby><cites>FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</cites><orcidid>0000-0001-5402-1382 ; 0000-0003-4682-0656 ; 0000-0002-4027-0000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704710/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704710/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36375063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Celis, Maria F. Rubin</creatorcontrib><creatorcontrib>Garcia-Martin, Ruben</creatorcontrib><creatorcontrib>Syed, Ismail</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Aguayo-Mazzucato, Cristina</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><creatorcontrib>Kahn, Barbara B.</creatorcontrib><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</description><subject>Animals</subject><subject>Autoimmune diseases</subject><subject>Autophagy</subject><subject>Beta cells</subject><subject>Biological Sciences</subject><subject>Cellular Senescence - genetics</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - genetics</subject><subject>Diabetes Mellitus, Type 1 - prevention & control</subject><subject>DNA repair</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Health risks</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin-Secreting Cells</subject><subject>Lipids</subject><subject>MDM2 protein</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>p53 Protein</subject><subject>Palmitic acid</subject><subject>Palmitic Acid - pharmacology</subject><subject>Pancreas</subject><subject>Proto-Oncogene Proteins c-mdm2 - genetics</subject><subject>Risk reduction</subject><subject>Senescence</subject><subject>Stearic Acids</subject><subject>Stress, Physiological</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcu6Y7t2I4vSKuqUKRWIAFny3Gc3awSO9gOKv89XrYsH6eR5_3myU8PoRcELglItp69SZeUglCUEaIeoRUBRSpRK3iMVgBUVk1N63P0NKU9ACjewBN0zgSTHARboftPm5vPm4Sj6xbrsHXjuIwm4uS8S9b5sjO-w3MM2dmMZ-NtdCYPFrcum198wn0ME57Kuw1jUVKOLiWcdzEs212x3hbLPASPQ4_vuomuZ86eobPejMk9f5gX6Ou76y9XN9Xtx_cfrja3la1rlivLXc8FMcCFbaUQjVFtrxrJuHDcGNtzI0HWUtWMEQGsl7LtW1FuLeOmU-wCvT36zks7ua5EytGMeo7DZOIPHcyg_1X8sNPb8F0rCbUkUAzePBjE8G1xKetpSIfcxruwJE0lE0JIQnlBX_-H7sMSfYl3oJRUUtRNodZHysaQUnT96TME9KFVfWhV_2m1XLz6O8OJ_11jAV4egX3KIZ50Kik0nCv2EyqjqP0</recordid><startdate>20221122</startdate><enddate>20221122</enddate><creator>de Celis, Maria F. Rubin</creator><creator>Garcia-Martin, Ruben</creator><creator>Syed, Ismail</creator><creator>Lee, Jennifer</creator><creator>Aguayo-Mazzucato, Cristina</creator><creator>Bonner-Weir, Susan</creator><creator>Kahn, Barbara B.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5402-1382</orcidid><orcidid>https://orcid.org/0000-0003-4682-0656</orcidid><orcidid>https://orcid.org/0000-0002-4027-0000</orcidid></search><sort><creationdate>20221122</creationdate><title>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</title><author>de Celis, Maria F. Rubin ; Garcia-Martin, Ruben ; Syed, Ismail ; Lee, Jennifer ; Aguayo-Mazzucato, Cristina ; Bonner-Weir, Susan ; Kahn, Barbara B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c5ef561a056cb7668a9bf987356e5aacf5a7074794331603f77bfb6443c35ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Autoimmune diseases</topic><topic>Autophagy</topic><topic>Beta cells</topic><topic>Biological Sciences</topic><topic>Cellular Senescence - genetics</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - genetics</topic><topic>Diabetes Mellitus, Type 1 - prevention & control</topic><topic>DNA repair</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Health risks</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin-Secreting Cells</topic><topic>Lipids</topic><topic>MDM2 protein</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>p53 Protein</topic><topic>Palmitic acid</topic><topic>Palmitic Acid - pharmacology</topic><topic>Pancreas</topic><topic>Proto-Oncogene Proteins c-mdm2 - genetics</topic><topic>Risk reduction</topic><topic>Senescence</topic><topic>Stearic Acids</topic><topic>Stress, Physiological</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Celis, Maria F. Rubin</creatorcontrib><creatorcontrib>Garcia-Martin, Ruben</creatorcontrib><creatorcontrib>Syed, Ismail</creatorcontrib><creatorcontrib>Lee, Jennifer</creatorcontrib><creatorcontrib>Aguayo-Mazzucato, Cristina</creatorcontrib><creatorcontrib>Bonner-Weir, Susan</creatorcontrib><creatorcontrib>Kahn, Barbara B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Celis, Maria F. Rubin</au><au>Garcia-Martin, Ruben</au><au>Syed, Ismail</au><au>Lee, Jennifer</au><au>Aguayo-Mazzucato, Cristina</au><au>Bonner-Weir, Susan</au><au>Kahn, Barbara B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-22</date><risdate>2022</risdate><volume>119</volume><issue>47</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Senescence in pancreatic beta cells plays a major role in beta cell dysfunction, which leads to impaired glucose homeostasis and diabetes. Therefore, prevention of beta cell senescence could reduce the risk of diabetes. Treatment of nonobese diabetic (NOD) mice, a model of type 1 autoimmune diabetes (T1D), with palmitic acid hydroxy stearic acids (PAHSAs), a novel class of endogenous lipids with antidiabetic and antiinflammatory effects, delays the onset and reduces the incidence of T1D from 82% with vehicle treatment to 35% with PAHSAs. Here, we show that a major mechanism by which PAHSAs protect islets of the NOD mice is by directly preventing and reversing the initial steps of metabolic stress–induced senescence. In vitro PAHSAs increased Mdm2 expression, which decreases the stability of p53, a key inducer of senescence-related genes. In addition, PAHSAs enhanced expression of protective genes, such as those regulating DNA repair and glutathione metabolism and promoting autophagy. We demonstrate the translational relevance by showing that PAHSAs prevent and reverse early stages of senescence in metabolically stressed human islets by the same Mdm2 mechanism. Thus, a major mechanism for the dramatic effect of PAHSAs in reducing the incidence of type 1 diabetes in NOD mice is decreasing cellular senescence; PAHSAs may have a similar benefit in humans.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36375063</pmid><doi>10.1073/pnas.2206923119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5402-1382</orcidid><orcidid>https://orcid.org/0000-0003-4682-0656</orcidid><orcidid>https://orcid.org/0000-0002-4027-0000</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (47), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9704710 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Autoimmune diseases Autophagy Beta cells Biological Sciences Cellular Senescence - genetics Diabetes Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - prevention & control DNA repair Gene expression Genes Glutathione Health risks Homeostasis Humans Insulin-Secreting Cells Lipids MDM2 protein Metabolism Mice Mice, Inbred NOD p53 Protein Palmitic acid Palmitic Acid - pharmacology Pancreas Proto-Oncogene Proteins c-mdm2 - genetics Risk reduction Senescence Stearic Acids Stress, Physiological Tumor Suppressor Protein p53 - genetics |
title | PAHSAs reduce cellular senescence and protect pancreatic beta cells from metabolic stress through regulation of Mdm2/p53 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PAHSAs%20reduce%20cellular%20senescence%20and%20protect%20pancreatic%20beta%20cells%20from%20metabolic%20stress%20through%20regulation%20of%20Mdm2/p53&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=de%20Celis,%20Maria%20F.%20Rubin&rft.date=2022-11-22&rft.volume=119&rft.issue=47&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2206923119&rft_dat=%3Cjstor_pubme%3E27208559%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739797648&rft_id=info:pmid/36375063&rft_jstor_id=27208559&rfr_iscdi=true |