A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana

Main conclusion Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2023-01, Vol.257 (1), p.6-6, Article 6
Hauptverfasser: Poveda, Jorge, Abril-Urías, Patricia, Muñoz-Acero, Julia, Nicolás, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 6
container_title Planta
container_volume 257
creator Poveda, Jorge
Abril-Urías, Patricia
Muñoz-Acero, Julia
Nicolás, Carlos
description Main conclusion Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant–microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma . These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana , as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens , T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma . Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.
doi_str_mv 10.1007/s00425-022-04036-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9701658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740366496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-252422e981d750520a7fd22e1005609c072083a3b2ef223abdaad29c727b17f03</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBCIHQZ-gAOyxIVLoGPHccIBabTiJS3ispytjuNMvEriYCcjzY_wvfTsLMvjwMFyy11d5epi7HkOr3MA_SYBFEJlIEQGBcgyUw_YJi-kyAQU1UO2AaAaaqku2JOUbgCoqfVjdiFLKmRVbNiPHZ_D4qbF48BjGBwPHU84eHukw9H6lvuJL73j7hCGdfFhwnjkjevx4EM8wa-jt31oXRyRY-LI5wGnhc-49GHvpre8i2HkXzDaHk9CpDgcxxDnHvkS-C5i49swJ59Ih6RxwqfsUYdDcs_u7i379uH99eWn7Orrx8-Xu6vMFlAsmVCiEMLVVd5qBUoA6q6lB1qPKqG2oAVUEmUjXCeExKZFbEVttdBNrjuQW_buzDuvzehaS4uIOJg5-pFcmoDe_N2ZfG_24WBqDXmpKiJ4dUcQw_fVpcWMPlk30AZcWJMRuoAaVEXqW_byH-hNWONE9m5RsiyLuiSUOKNsDClF191_Jgdzit2cYzcUu7mN3SgaevGnjfuRXzkTQJ4BiVrT3sXf2v-h_Qk5_rqL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740366496</pqid></control><display><type>article</type><title>A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Poveda, Jorge ; Abril-Urías, Patricia ; Muñoz-Acero, Julia ; Nicolás, Carlos</creator><creatorcontrib>Poveda, Jorge ; Abril-Urías, Patricia ; Muñoz-Acero, Julia ; Nicolás, Carlos</creatorcontrib><description>Main conclusion Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant–microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma . These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana , as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens , T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma . Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-022-04036-5</identifier><identifier>PMID: 36437384</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Allelochemicals ; Aquatic plants ; Arabidopsis - metabolism ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Colonization ; Defense mechanisms ; Ecology ; Evolution ; Exudates ; Exudation ; Forestry ; Fungi ; Gene expression ; Genes ; Life Sciences ; Marchantia - genetics ; Marchantia - metabolism ; Marchantia polymorpha ; Original ; Original Article ; Pathogenicity ; Pathogens ; Plant Sciences ; Salicylic acid ; Salicylic Acid - metabolism ; Symbiosis ; Transcription activation ; Trichoderma ; Trichoderma - genetics ; Volatiles</subject><ispartof>Planta, 2023-01, Vol.257 (1), p.6-6, Article 6</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-252422e981d750520a7fd22e1005609c072083a3b2ef223abdaad29c727b17f03</citedby><cites>FETCH-LOGICAL-c404t-252422e981d750520a7fd22e1005609c072083a3b2ef223abdaad29c727b17f03</cites><orcidid>0000-0002-2484-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-022-04036-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-022-04036-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36437384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poveda, Jorge</creatorcontrib><creatorcontrib>Abril-Urías, Patricia</creatorcontrib><creatorcontrib>Muñoz-Acero, Julia</creatorcontrib><creatorcontrib>Nicolás, Carlos</creatorcontrib><title>A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant–microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma . These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana , as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens , T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma . Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.</description><subject>Agriculture</subject><subject>Allelochemicals</subject><subject>Aquatic plants</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Colonization</subject><subject>Defense mechanisms</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Exudates</subject><subject>Exudation</subject><subject>Forestry</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Life Sciences</subject><subject>Marchantia - genetics</subject><subject>Marchantia - metabolism</subject><subject>Marchantia polymorpha</subject><subject>Original</subject><subject>Original Article</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Plant Sciences</subject><subject>Salicylic acid</subject><subject>Salicylic Acid - metabolism</subject><subject>Symbiosis</subject><subject>Transcription activation</subject><subject>Trichoderma</subject><subject>Trichoderma - genetics</subject><subject>Volatiles</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcuO1DAQtBCIHQZ-gAOyxIVLoGPHccIBabTiJS3ispytjuNMvEriYCcjzY_wvfTsLMvjwMFyy11d5epi7HkOr3MA_SYBFEJlIEQGBcgyUw_YJi-kyAQU1UO2AaAaaqku2JOUbgCoqfVjdiFLKmRVbNiPHZ_D4qbF48BjGBwPHU84eHukw9H6lvuJL73j7hCGdfFhwnjkjevx4EM8wa-jt31oXRyRY-LI5wGnhc-49GHvpre8i2HkXzDaHk9CpDgcxxDnHvkS-C5i49swJ59Ih6RxwqfsUYdDcs_u7i379uH99eWn7Orrx8-Xu6vMFlAsmVCiEMLVVd5qBUoA6q6lB1qPKqG2oAVUEmUjXCeExKZFbEVttdBNrjuQW_buzDuvzehaS4uIOJg5-pFcmoDe_N2ZfG_24WBqDXmpKiJ4dUcQw_fVpcWMPlk30AZcWJMRuoAaVEXqW_byH-hNWONE9m5RsiyLuiSUOKNsDClF191_Jgdzit2cYzcUu7mN3SgaevGnjfuRXzkTQJ4BiVrT3sXf2v-h_Qk5_rqL</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Poveda, Jorge</creator><creator>Abril-Urías, Patricia</creator><creator>Muñoz-Acero, Julia</creator><creator>Nicolás, Carlos</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2484-545X</orcidid></search><sort><creationdate>20230101</creationdate><title>A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana</title><author>Poveda, Jorge ; Abril-Urías, Patricia ; Muñoz-Acero, Julia ; Nicolás, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-252422e981d750520a7fd22e1005609c072083a3b2ef223abdaad29c727b17f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Allelochemicals</topic><topic>Aquatic plants</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Colonization</topic><topic>Defense mechanisms</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Exudates</topic><topic>Exudation</topic><topic>Forestry</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Life Sciences</topic><topic>Marchantia - genetics</topic><topic>Marchantia - metabolism</topic><topic>Marchantia polymorpha</topic><topic>Original</topic><topic>Original Article</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Plant Sciences</topic><topic>Salicylic acid</topic><topic>Salicylic Acid - metabolism</topic><topic>Symbiosis</topic><topic>Transcription activation</topic><topic>Trichoderma</topic><topic>Trichoderma - genetics</topic><topic>Volatiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poveda, Jorge</creatorcontrib><creatorcontrib>Abril-Urías, Patricia</creatorcontrib><creatorcontrib>Muñoz-Acero, Julia</creatorcontrib><creatorcontrib>Nicolás, Carlos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poveda, Jorge</au><au>Abril-Urías, Patricia</au><au>Muñoz-Acero, Julia</au><au>Nicolás, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>257</volume><issue>1</issue><spage>6</spage><epage>6</epage><pages>6-6</pages><artnum>6</artnum><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Main conclusion Recognition of the interaction of Trichoderma during the evolution of land plants plays a potential key role in the development of the salicylic acid defense pathway and the establishment of a mutualistic relationship. Marchantia polymorpha is a common liverwort considered in recent years as a model plant for evolutionary studies on plant–microorganism interactions. Despite the lack of research, remarkable results have been reported regarding the understanding of metabolic and evolutionary processes of beneficial and/or harmful interactions, owing to a better understanding of the origin and evolution of different plant defense pathways. In this study, we have carried out work on the direct and indirect interactions (exudates and volatiles) of M. polymorpha with different species of the fungal genus Trichoderma . These interactions showed different outcomes, including resistance or even growth promotion and disease. We have analyzed the level of tissue colonization and defense-related gene expression. Furthermore, we have used the pteridophyte Dryopteris affinis and the angiosperm Arabidopsis thaliana , as subsequent steps in plant evolution, together with the plant pathogen Rhizoctonia solani as a control of plant pathogenicity. Trichoderma virens , T. brevicompactum and T. hamatum are pathogens of M. polymorpha, while exudates of T. asperellum are harmful to the plant. The analysis of the expression of several defense genes in M. polymorpha and A. thaliana showed that there is a correlation of the transcriptional activation of SA-related genes with resistance or susceptibility of M. polymorpha to Trichoderma . Moreover, exogenous SA provides resistance to the virulent Trichoderma species. This beneficial fungus may have had an evolutionary period of interaction with plants in which it behaved as a plant pathogen until plants developed a defense system to limit its colonization through a defense response mediated by SA.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36437384</pmid><doi>10.1007/s00425-022-04036-5</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2484-545X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2023-01, Vol.257 (1), p.6-6, Article 6
issn 0032-0935
1432-2048
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9701658
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Allelochemicals
Aquatic plants
Arabidopsis - metabolism
Arabidopsis thaliana
Biomedical and Life Sciences
Colonization
Defense mechanisms
Ecology
Evolution
Exudates
Exudation
Forestry
Fungi
Gene expression
Genes
Life Sciences
Marchantia - genetics
Marchantia - metabolism
Marchantia polymorpha
Original
Original Article
Pathogenicity
Pathogens
Plant Sciences
Salicylic acid
Salicylic Acid - metabolism
Symbiosis
Transcription activation
Trichoderma
Trichoderma - genetics
Volatiles
title A potential role of salicylic acid in the evolutionary behavior of Trichoderma as a plant pathogen: from Marchantia polymorpha to Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20potential%20role%20of%20salicylic%20acid%20in%20the%20evolutionary%20behavior%20of%20Trichoderma%20as%20a%20plant%20pathogen:%20from%20Marchantia%20polymorpha%20to%20Arabidopsis%20thaliana&rft.jtitle=Planta&rft.au=Poveda,%20Jorge&rft.date=2023-01-01&rft.volume=257&rft.issue=1&rft.spage=6&rft.epage=6&rft.pages=6-6&rft.artnum=6&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-022-04036-5&rft_dat=%3Cproquest_pubme%3E2740366496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740366496&rft_id=info:pmid/36437384&rfr_iscdi=true