Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization
With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current softwar...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-03, Vol.62 (6), p.1479-1488 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1488 |
---|---|
container_issue | 6 |
container_start_page | 1479 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Vilseck, Jonah Z Cervantes, Luis F Hayes, Ryan L |
description | With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design. |
doi_str_mv | 10.1021/acs.jcim.2c00047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9700484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639229601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</originalsourceid><addsrcrecordid>eNp1kc1qGzEUhUVJaFyn-67CQDZZ1O6VNKMZbQrB-TO4BIIL3QlZkT0yMyNX0rTYq7xCnifvkIfIk0Su7dAEstIFfefcn4PQFwx9DAR_k8r358rUfaIAIM0_oA7OUt7jDH7t7eqMswP0yfs5AKWckY_ogGakYMBpBw2vF8HUZmWaWfKjrYLxJujk8eHp7v5s2cjaKJ-MS2fbWbloQ_LXhDIZlNLNdHKjG-tqWZmVDMY2h2h_KiuvP2_fLvp5cT4eXPVG15fDwemoJ1OGQy8tVI5zBlhPGNCCa67yW5hqjMlEYTxlBYVMZlhRohVImhaE5ZixNMc6LbKUdtH3je-indT6VukmOFmJhTO1dEthpRGvfxpTipn9I3geT1SsDU62Bs7-brUPojZe6aqSjbatF4RRTkg8IY7o8Rt0blvXxPUitZ6MAieRgg2lnPXe6enLMBjEOicRcxLrnMQ2pyg5-n-JF8EumAh83QD_pLum7_o9A_kQoIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648263092</pqid></control><display><type>article</type><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</creator><creatorcontrib>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</creatorcontrib><description>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00047</identifier><identifier>PMID: 35286093</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CAD ; Combinatorial analysis ; Computational Chemistry ; Computer aided design ; Drug Design ; Energy methods ; Entropy ; Free energy ; Functional groups ; Ligands ; Molecular Dynamics Simulation ; Perturbation ; Thermodynamics ; Topology ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2022-03, Vol.62 (6), p.1479-1488</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 28, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</citedby><cites>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</cites><orcidid>0000-0001-7076-8996 ; 0000-0002-8149-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35286093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Cervantes, Luis F</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</description><subject>CAD</subject><subject>Combinatorial analysis</subject><subject>Computational Chemistry</subject><subject>Computer aided design</subject><subject>Drug Design</subject><subject>Energy methods</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Perturbation</subject><subject>Thermodynamics</subject><subject>Topology</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qGzEUhUVJaFyn-67CQDZZ1O6VNKMZbQrB-TO4BIIL3QlZkT0yMyNX0rTYq7xCnifvkIfIk0Su7dAEstIFfefcn4PQFwx9DAR_k8r358rUfaIAIM0_oA7OUt7jDH7t7eqMswP0yfs5AKWckY_ogGakYMBpBw2vF8HUZmWaWfKjrYLxJujk8eHp7v5s2cjaKJ-MS2fbWbloQ_LXhDIZlNLNdHKjG-tqWZmVDMY2h2h_KiuvP2_fLvp5cT4eXPVG15fDwemoJ1OGQy8tVI5zBlhPGNCCa67yW5hqjMlEYTxlBYVMZlhRohVImhaE5ZixNMc6LbKUdtH3je-indT6VukmOFmJhTO1dEthpRGvfxpTipn9I3geT1SsDU62Bs7-brUPojZe6aqSjbatF4RRTkg8IY7o8Rt0blvXxPUitZ6MAieRgg2lnPXe6enLMBjEOicRcxLrnMQ2pyg5-n-JF8EumAh83QD_pLum7_o9A_kQoIY</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Vilseck, Jonah Z</creator><creator>Cervantes, Luis F</creator><creator>Hayes, Ryan L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7076-8996</orcidid><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid></search><sort><creationdate>20220328</creationdate><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><author>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAD</topic><topic>Combinatorial analysis</topic><topic>Computational Chemistry</topic><topic>Computer aided design</topic><topic>Drug Design</topic><topic>Energy methods</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Perturbation</topic><topic>Thermodynamics</topic><topic>Topology</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Cervantes, Luis F</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilseck, Jonah Z</au><au>Cervantes, Luis F</au><au>Hayes, Ryan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>62</volume><issue>6</issue><spage>1479</spage><epage>1488</epage><pages>1479-1488</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35286093</pmid><doi>10.1021/acs.jcim.2c00047</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7076-8996</orcidid><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-03, Vol.62 (6), p.1479-1488 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9700484 |
source | ACS Publications; MEDLINE |
subjects | CAD Combinatorial analysis Computational Chemistry Computer aided design Drug Design Energy methods Entropy Free energy Functional groups Ligands Molecular Dynamics Simulation Perturbation Thermodynamics Topology Workflow |
title | Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Multisite%20%CE%BB%E2%80%91Dynamics%20Throughput%20with%20Charge%20Renormalization&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Vilseck,%20Jonah%20Z&rft.date=2022-03-28&rft.volume=62&rft.issue=6&rft.spage=1479&rft.epage=1488&rft.pages=1479-1488&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00047&rft_dat=%3Cproquest_pubme%3E2639229601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648263092&rft_id=info:pmid/35286093&rfr_iscdi=true |