Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization

With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current softwar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2022-03, Vol.62 (6), p.1479-1488
Hauptverfasser: Vilseck, Jonah Z, Cervantes, Luis F, Hayes, Ryan L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1488
container_issue 6
container_start_page 1479
container_title Journal of chemical information and modeling
container_volume 62
creator Vilseck, Jonah Z
Cervantes, Luis F
Hayes, Ryan L
description With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.
doi_str_mv 10.1021/acs.jcim.2c00047
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9700484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639229601</sourcerecordid><originalsourceid>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</originalsourceid><addsrcrecordid>eNp1kc1qGzEUhUVJaFyn-67CQDZZ1O6VNKMZbQrB-TO4BIIL3QlZkT0yMyNX0rTYq7xCnifvkIfIk0Su7dAEstIFfefcn4PQFwx9DAR_k8r358rUfaIAIM0_oA7OUt7jDH7t7eqMswP0yfs5AKWckY_ogGakYMBpBw2vF8HUZmWaWfKjrYLxJujk8eHp7v5s2cjaKJ-MS2fbWbloQ_LXhDIZlNLNdHKjG-tqWZmVDMY2h2h_KiuvP2_fLvp5cT4eXPVG15fDwemoJ1OGQy8tVI5zBlhPGNCCa67yW5hqjMlEYTxlBYVMZlhRohVImhaE5ZixNMc6LbKUdtH3je-indT6VukmOFmJhTO1dEthpRGvfxpTipn9I3geT1SsDU62Bs7-brUPojZe6aqSjbatF4RRTkg8IY7o8Rt0blvXxPUitZ6MAieRgg2lnPXe6enLMBjEOicRcxLrnMQ2pyg5-n-JF8EumAh83QD_pLum7_o9A_kQoIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2648263092</pqid></control><display><type>article</type><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><source>ACS Publications</source><source>MEDLINE</source><creator>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</creator><creatorcontrib>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</creatorcontrib><description>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00047</identifier><identifier>PMID: 35286093</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>CAD ; Combinatorial analysis ; Computational Chemistry ; Computer aided design ; Drug Design ; Energy methods ; Entropy ; Free energy ; Functional groups ; Ligands ; Molecular Dynamics Simulation ; Perturbation ; Thermodynamics ; Topology ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2022-03, Vol.62 (6), p.1479-1488</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 28, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</citedby><cites>FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</cites><orcidid>0000-0001-7076-8996 ; 0000-0002-8149-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00047$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00047$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35286093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Cervantes, Luis F</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</description><subject>CAD</subject><subject>Combinatorial analysis</subject><subject>Computational Chemistry</subject><subject>Computer aided design</subject><subject>Drug Design</subject><subject>Energy methods</subject><subject>Entropy</subject><subject>Free energy</subject><subject>Functional groups</subject><subject>Ligands</subject><subject>Molecular Dynamics Simulation</subject><subject>Perturbation</subject><subject>Thermodynamics</subject><subject>Topology</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qGzEUhUVJaFyn-67CQDZZ1O6VNKMZbQrB-TO4BIIL3QlZkT0yMyNX0rTYq7xCnifvkIfIk0Su7dAEstIFfefcn4PQFwx9DAR_k8r358rUfaIAIM0_oA7OUt7jDH7t7eqMswP0yfs5AKWckY_ogGakYMBpBw2vF8HUZmWaWfKjrYLxJujk8eHp7v5s2cjaKJ-MS2fbWbloQ_LXhDIZlNLNdHKjG-tqWZmVDMY2h2h_KiuvP2_fLvp5cT4eXPVG15fDwemoJ1OGQy8tVI5zBlhPGNCCa67yW5hqjMlEYTxlBYVMZlhRohVImhaE5ZixNMc6LbKUdtH3je-indT6VukmOFmJhTO1dEthpRGvfxpTipn9I3geT1SsDU62Bs7-brUPojZe6aqSjbatF4RRTkg8IY7o8Rt0blvXxPUitZ6MAieRgg2lnPXe6enLMBjEOicRcxLrnMQ2pyg5-n-JF8EumAh83QD_pLum7_o9A_kQoIY</recordid><startdate>20220328</startdate><enddate>20220328</enddate><creator>Vilseck, Jonah Z</creator><creator>Cervantes, Luis F</creator><creator>Hayes, Ryan L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7076-8996</orcidid><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid></search><sort><creationdate>20220328</creationdate><title>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</title><author>Vilseck, Jonah Z ; Cervantes, Luis F ; Hayes, Ryan L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a461t-48c717601eb60389e9c7d0fe112bc11f68305a51c32ec0a348267166471e48543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CAD</topic><topic>Combinatorial analysis</topic><topic>Computational Chemistry</topic><topic>Computer aided design</topic><topic>Drug Design</topic><topic>Energy methods</topic><topic>Entropy</topic><topic>Free energy</topic><topic>Functional groups</topic><topic>Ligands</topic><topic>Molecular Dynamics Simulation</topic><topic>Perturbation</topic><topic>Thermodynamics</topic><topic>Topology</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Cervantes, Luis F</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilseck, Jonah Z</au><au>Cervantes, Luis F</au><au>Hayes, Ryan L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-03-28</date><risdate>2022</risdate><volume>62</volume><issue>6</issue><spage>1479</spage><epage>1488</epage><pages>1479-1488</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>With the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35286093</pmid><doi>10.1021/acs.jcim.2c00047</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7076-8996</orcidid><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2022-03, Vol.62 (6), p.1479-1488
issn 1549-9596
1549-960X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9700484
source ACS Publications; MEDLINE
subjects CAD
Combinatorial analysis
Computational Chemistry
Computer aided design
Drug Design
Energy methods
Entropy
Free energy
Functional groups
Ligands
Molecular Dynamics Simulation
Perturbation
Thermodynamics
Topology
Workflow
title Optimizing Multisite λ‑Dynamics Throughput with Charge Renormalization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Multisite%20%CE%BB%E2%80%91Dynamics%20Throughput%20with%20Charge%20Renormalization&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Vilseck,%20Jonah%20Z&rft.date=2022-03-28&rft.volume=62&rft.issue=6&rft.spage=1479&rft.epage=1488&rft.pages=1479-1488&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00047&rft_dat=%3Cproquest_pubme%3E2639229601%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2648263092&rft_id=info:pmid/35286093&rfr_iscdi=true