Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures

High-strength steel has been increasingly applied to engineering structures and inevitably faces fire risks. The equivalent stress-plastic strain (σeq- εeqp) curves of steel at elevated temperatures are indispensable if a refined finite element model is used to investigate the response of steel memb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-11, Vol.15 (22), p.8075
Hauptverfasser: Zeng, Xiang, Wu, Wanbo, Zou, Juan, Elchalakani, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 8075
container_title Materials
container_volume 15
creator Zeng, Xiang
Wu, Wanbo
Zou, Juan
Elchalakani, Mohamed
description High-strength steel has been increasingly applied to engineering structures and inevitably faces fire risks. The equivalent stress-plastic strain (σeq- εeqp) curves of steel at elevated temperatures are indispensable if a refined finite element model is used to investigate the response of steel members and structures under fire. If the tensile deformation of steel is considerable, the σeq- εeqp curves at elevated temperatures are required to consider the strain-hardening behavior during the post-necking phase. However, there is little research on the topic. Based on the engineering stress-strain curves of Q890 high-strength steel in a uniaxial tension experiment at elevated temperatures, the σeq-εeqp curves before necking are determined using theoretical formulations. An inverse method based on finite element analysis is used to determine the σeq- εeqp curves during the post-necking phase. The characteristics of σeq-εeqp curves, including the full-range strain hardening behavior at different temperatures, are discussed. An equivalent stress-plastic strain model of Q890 steel at elevated temperature is proposed, which is consistent with the σeq-εeqp curves. The constitutive model is further verified by comparing the finite element analysis and test results.
doi_str_mv 10.3390/ma15228075
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745741543</galeid><sourcerecordid>A745741543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-16bfdb2c39cc527c4f06ccb08677f82c88ef16b17dfee4a55e64c6d7b357f85f3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEolXphQdAkbggpBQ7tuPkglRWW7ZSEQjKOfI646wrx25tJxIPw7syq21LwT74z_zmG3_yFMVrSs4Y68iHSVFR1y2R4llxTLuuqWjH-fMn-6PiNKUbgoMx2tbdy-KINZxRIdhx8XsVfMo2z9kuUH4JA7jShFiu72a7KAc-lz9yhJSqb04hqPdHZX25muMCqbz02s2D9WN5MTtXfVd-hAdko-IAfh_7BDu1WJQNptzYcVftNf2Yd4gCVlS5XDtYVIahvIbpFqLKM1Z9VbwwyiU4vV9Pip8X6-vVprr6-vlydX5VacZ4rmizNcO21qzTWtRSc0MarbekbaQ0ba3bFgwyVA4GgCshoOG6GeSWCYwLw06Kjwfd23k7waDRdlSuv412UvFXH5Tt_414u-vHsPRd07WtrFHg3b1ADHczpNxPNmlwTnkIc-pryYkgkhCK6Nv_0JswR4_2kGL4X-hgT50dqBE_obfeBKyrcQ4wWR08GIv355ILyangDBPeHxJ0DClFMI-vp6Tfd0r_t1MQfvPU7yP60BfsD9jFvC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739445271</pqid></control><display><type>article</type><title>Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zeng, Xiang ; Wu, Wanbo ; Zou, Juan ; Elchalakani, Mohamed</creator><creatorcontrib>Zeng, Xiang ; Wu, Wanbo ; Zou, Juan ; Elchalakani, Mohamed</creatorcontrib><description>High-strength steel has been increasingly applied to engineering structures and inevitably faces fire risks. The equivalent stress-plastic strain (σeq- εeqp) curves of steel at elevated temperatures are indispensable if a refined finite element model is used to investigate the response of steel members and structures under fire. If the tensile deformation of steel is considerable, the σeq- εeqp curves at elevated temperatures are required to consider the strain-hardening behavior during the post-necking phase. However, there is little research on the topic. Based on the engineering stress-strain curves of Q890 high-strength steel in a uniaxial tension experiment at elevated temperatures, the σeq-εeqp curves before necking are determined using theoretical formulations. An inverse method based on finite element analysis is used to determine the σeq- εeqp curves during the post-necking phase. The characteristics of σeq-εeqp curves, including the full-range strain hardening behavior at different temperatures, are discussed. An equivalent stress-plastic strain model of Q890 steel at elevated temperature is proposed, which is consistent with the σeq-εeqp curves. The constitutive model is further verified by comparing the finite element analysis and test results.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15228075</identifier><identifier>PMID: 36431553</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Constitutive models ; Engineering ; Equivalence ; Finite element method ; High strength steel ; High strength steels ; High temperature ; Inverse method ; Mathematical models ; Mechanical properties ; Necking ; Numerical analysis ; Plastic deformation ; Steel ; Steel structures ; Steel, High strength ; Steel, Structural ; Strain hardening ; Stress-strain curves ; Temperature ; Tensile deformation ; Tensile strength ; Yield stress</subject><ispartof>Materials, 2022-11, Vol.15 (22), p.8075</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-16bfdb2c39cc527c4f06ccb08677f82c88ef16b17dfee4a55e64c6d7b357f85f3</cites><orcidid>0000-0002-6011-5235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698872/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698872/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36431553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Wu, Wanbo</creatorcontrib><creatorcontrib>Zou, Juan</creatorcontrib><creatorcontrib>Elchalakani, Mohamed</creatorcontrib><title>Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>High-strength steel has been increasingly applied to engineering structures and inevitably faces fire risks. The equivalent stress-plastic strain (σeq- εeqp) curves of steel at elevated temperatures are indispensable if a refined finite element model is used to investigate the response of steel members and structures under fire. If the tensile deformation of steel is considerable, the σeq- εeqp curves at elevated temperatures are required to consider the strain-hardening behavior during the post-necking phase. However, there is little research on the topic. Based on the engineering stress-strain curves of Q890 high-strength steel in a uniaxial tension experiment at elevated temperatures, the σeq-εeqp curves before necking are determined using theoretical formulations. An inverse method based on finite element analysis is used to determine the σeq- εeqp curves during the post-necking phase. The characteristics of σeq-εeqp curves, including the full-range strain hardening behavior at different temperatures, are discussed. An equivalent stress-plastic strain model of Q890 steel at elevated temperature is proposed, which is consistent with the σeq-εeqp curves. The constitutive model is further verified by comparing the finite element analysis and test results.</description><subject>Analysis</subject><subject>Constitutive models</subject><subject>Engineering</subject><subject>Equivalence</subject><subject>Finite element method</subject><subject>High strength steel</subject><subject>High strength steels</subject><subject>High temperature</subject><subject>Inverse method</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Necking</subject><subject>Numerical analysis</subject><subject>Plastic deformation</subject><subject>Steel</subject><subject>Steel structures</subject><subject>Steel, High strength</subject><subject>Steel, Structural</subject><subject>Strain hardening</subject><subject>Stress-strain curves</subject><subject>Temperature</subject><subject>Tensile deformation</subject><subject>Tensile strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdks9u1DAQxiMEolXphQdAkbggpBQ7tuPkglRWW7ZSEQjKOfI646wrx25tJxIPw7syq21LwT74z_zmG3_yFMVrSs4Y68iHSVFR1y2R4llxTLuuqWjH-fMn-6PiNKUbgoMx2tbdy-KINZxRIdhx8XsVfMo2z9kuUH4JA7jShFiu72a7KAc-lz9yhJSqb04hqPdHZX25muMCqbz02s2D9WN5MTtXfVd-hAdko-IAfh_7BDu1WJQNptzYcVftNf2Yd4gCVlS5XDtYVIahvIbpFqLKM1Z9VbwwyiU4vV9Pip8X6-vVprr6-vlydX5VacZ4rmizNcO21qzTWtRSc0MarbekbaQ0ba3bFgwyVA4GgCshoOG6GeSWCYwLw06Kjwfd23k7waDRdlSuv412UvFXH5Tt_414u-vHsPRd07WtrFHg3b1ADHczpNxPNmlwTnkIc-pryYkgkhCK6Nv_0JswR4_2kGL4X-hgT50dqBE_obfeBKyrcQ4wWR08GIv355ILyangDBPeHxJ0DClFMI-vp6Tfd0r_t1MQfvPU7yP60BfsD9jFvC4</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Zeng, Xiang</creator><creator>Wu, Wanbo</creator><creator>Zou, Juan</creator><creator>Elchalakani, Mohamed</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6011-5235</orcidid></search><sort><creationdate>20221115</creationdate><title>Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures</title><author>Zeng, Xiang ; Wu, Wanbo ; Zou, Juan ; Elchalakani, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-16bfdb2c39cc527c4f06ccb08677f82c88ef16b17dfee4a55e64c6d7b357f85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Constitutive models</topic><topic>Engineering</topic><topic>Equivalence</topic><topic>Finite element method</topic><topic>High strength steel</topic><topic>High strength steels</topic><topic>High temperature</topic><topic>Inverse method</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Necking</topic><topic>Numerical analysis</topic><topic>Plastic deformation</topic><topic>Steel</topic><topic>Steel structures</topic><topic>Steel, High strength</topic><topic>Steel, Structural</topic><topic>Strain hardening</topic><topic>Stress-strain curves</topic><topic>Temperature</topic><topic>Tensile deformation</topic><topic>Tensile strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Wu, Wanbo</creatorcontrib><creatorcontrib>Zou, Juan</creatorcontrib><creatorcontrib>Elchalakani, Mohamed</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Xiang</au><au>Wu, Wanbo</au><au>Zou, Juan</au><au>Elchalakani, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>15</volume><issue>22</issue><spage>8075</spage><pages>8075-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>High-strength steel has been increasingly applied to engineering structures and inevitably faces fire risks. The equivalent stress-plastic strain (σeq- εeqp) curves of steel at elevated temperatures are indispensable if a refined finite element model is used to investigate the response of steel members and structures under fire. If the tensile deformation of steel is considerable, the σeq- εeqp curves at elevated temperatures are required to consider the strain-hardening behavior during the post-necking phase. However, there is little research on the topic. Based on the engineering stress-strain curves of Q890 high-strength steel in a uniaxial tension experiment at elevated temperatures, the σeq-εeqp curves before necking are determined using theoretical formulations. An inverse method based on finite element analysis is used to determine the σeq- εeqp curves during the post-necking phase. The characteristics of σeq-εeqp curves, including the full-range strain hardening behavior at different temperatures, are discussed. An equivalent stress-plastic strain model of Q890 steel at elevated temperature is proposed, which is consistent with the σeq-εeqp curves. The constitutive model is further verified by comparing the finite element analysis and test results.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36431553</pmid><doi>10.3390/ma15228075</doi><orcidid>https://orcid.org/0000-0002-6011-5235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-11, Vol.15 (22), p.8075
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698872
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Constitutive models
Engineering
Equivalence
Finite element method
High strength steel
High strength steels
High temperature
Inverse method
Mathematical models
Mechanical properties
Necking
Numerical analysis
Plastic deformation
Steel
Steel structures
Steel, High strength
Steel, Structural
Strain hardening
Stress-strain curves
Temperature
Tensile deformation
Tensile strength
Yield stress
title Constitutive Model for Equivalent Stress-Plastic Strain Curves Including Full-Range Strain Hardening Behavior of High-Strength Steel at Elevated Temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20Model%20for%20Equivalent%20Stress-Plastic%20Strain%20Curves%20Including%20Full-Range%20Strain%20Hardening%20Behavior%20of%20High-Strength%20Steel%20at%20Elevated%20Temperatures&rft.jtitle=Materials&rft.au=Zeng,%20Xiang&rft.date=2022-11-15&rft.volume=15&rft.issue=22&rft.spage=8075&rft.pages=8075-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15228075&rft_dat=%3Cgale_pubme%3EA745741543%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739445271&rft_id=info:pmid/36431553&rft_galeid=A745741543&rfr_iscdi=true