A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding

Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2022-11, Vol.14 (22), p.4936
Hauptverfasser: Paalvast, Yared, Zhou, Enchen, Rozendaal, Yvonne J W, Wang, Yanan, Gerding, Albert, van Dijk, Theo H, de Boer, Jan Freark, Rensen, Patrick C N, van Dijk, Ko Willems, Kuivenhoven, Jan A, Bakker, Barbara M, van Riel, Natal A W, Groen, Albert K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 4936
container_title Nutrients
container_volume 14
creator Paalvast, Yared
Zhou, Enchen
Rozendaal, Yvonne J W
Wang, Yanan
Gerding, Albert
van Dijk, Theo H
de Boer, Jan Freark
Rensen, Patrick C N
van Dijk, Ko Willems
Kuivenhoven, Jan A
Bakker, Barbara M
van Riel, Natal A W
Groen, Albert K
description Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.
doi_str_mv 10.3390/nu14224936
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746325205</galeid><sourcerecordid>A746325205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</originalsourceid><addsrcrecordid>eNptkt9r2zAQx03ZaEvXl_0BQ7C3gTNZUiX7ZWDSZClkNLDsWcjSyVGxpcyyC37tXz6n6U-Y7kHH6Xsf7k6XJJ8zPKO0wN_9kDFCWEH5SXJOsCAp54x-eOOfJZcx3uHDEVhwepqc0SlMOMHnyUOJfo-xhzai0qtmjC6iYNFmBz704x7QCnroQg0eXD8i51G5uV3QNTgDfjZfbDfol9OAbrwZNBhUjWgdfJ1uoWvRytW7dKn6ozPfhQbigdagawc9WgIY5-tPyUermgiXT_dF8me52M5X6fr25828XKeaCdqnGaEWNFRGccyZZTTXVaW5KPKiskYxYUAAxiqnWWYLSzJLdZ5nyla5MgwKepH8OHL3Q9WC0eD7TjVy37lWdaMMysn3L97tZB3uZcGLHOOrCfD1CdCFv8PUirwLQzdNLUoiaMEYz7F4VdWqAem8DRNMty5qWQrGKbkij6zZf1STGWidDh6sm-LvEr4dE3QXYuzAvhSeYXnYBPm6CZP4y9tWX6TP_07_AeiLrZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739446807</pqid></control><display><type>article</type><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</creator><creatorcontrib>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</creatorcontrib><description>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu14224936</identifier><identifier>PMID: 36432620</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption ; Adaptation ; Animals ; Apolipoprotein E ; Apolipoprotein E3 - genetics ; Apolipoprotein E3 - metabolism ; Apolipoproteins ; Bile ; Bile acids ; Bile Acids and Salts - metabolism ; Cholesterol ; Cholesterol - metabolism ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Chromatography ; Computer applications ; Constraint modelling ; Deoxycholic acid ; Diet ; Diet, High-Fat - adverse effects ; Dyslipidemia ; Energy expenditure ; Enzyme kinetics ; Excretion ; Fatty acids ; Fatty Acids - metabolism ; Genetic diversity ; Glucose ; Glucose - metabolism ; Heterogeneity ; High cholesterol diet ; High fat diet ; Homeostasis ; Human populations ; Inbreeding ; Insulin resistance ; Intestine ; Lipid metabolism ; Lipids ; Liver - metabolism ; Longitudinal Studies ; Metabolic disorders ; Metabolic syndrome ; Metabolic Syndrome - genetics ; Metabolic Syndrome - metabolism ; Mice ; Phenotype ; Phenotypes ; Phenotypic variations ; Physiological aspects ; Plasma ; Solubilization ; Systems Analysis ; Triglycerides</subject><ispartof>Nutrients, 2022-11, Vol.14 (22), p.4936</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</citedby><cites>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</cites><orcidid>0000-0002-8455-4988 ; 0000-0002-0327-0458 ; 0000-0001-6759-3291 ; 0000-0001-9375-4730 ; 0000-0002-2172-7394 ; 0000-0003-1648-9851 ; 0000-0003-1812-7694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36432620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paalvast, Yared</creatorcontrib><creatorcontrib>Zhou, Enchen</creatorcontrib><creatorcontrib>Rozendaal, Yvonne J W</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>van Dijk, Theo H</creatorcontrib><creatorcontrib>de Boer, Jan Freark</creatorcontrib><creatorcontrib>Rensen, Patrick C N</creatorcontrib><creatorcontrib>van Dijk, Ko Willems</creatorcontrib><creatorcontrib>Kuivenhoven, Jan A</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><creatorcontrib>Groen, Albert K</creatorcontrib><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</description><subject>Absorption</subject><subject>Adaptation</subject><subject>Animals</subject><subject>Apolipoprotein E</subject><subject>Apolipoprotein E3 - genetics</subject><subject>Apolipoprotein E3 - metabolism</subject><subject>Apolipoproteins</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Chromatography</subject><subject>Computer applications</subject><subject>Constraint modelling</subject><subject>Deoxycholic acid</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Dyslipidemia</subject><subject>Energy expenditure</subject><subject>Enzyme kinetics</subject><subject>Excretion</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Genetic diversity</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heterogeneity</subject><subject>High cholesterol diet</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Human populations</subject><subject>Inbreeding</subject><subject>Insulin resistance</subject><subject>Intestine</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Longitudinal Studies</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolic Syndrome - genetics</subject><subject>Metabolic Syndrome - metabolism</subject><subject>Mice</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Physiological aspects</subject><subject>Plasma</subject><subject>Solubilization</subject><subject>Systems Analysis</subject><subject>Triglycerides</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkt9r2zAQx03ZaEvXl_0BQ7C3gTNZUiX7ZWDSZClkNLDsWcjSyVGxpcyyC37tXz6n6U-Y7kHH6Xsf7k6XJJ8zPKO0wN_9kDFCWEH5SXJOsCAp54x-eOOfJZcx3uHDEVhwepqc0SlMOMHnyUOJfo-xhzai0qtmjC6iYNFmBz704x7QCnroQg0eXD8i51G5uV3QNTgDfjZfbDfol9OAbrwZNBhUjWgdfJ1uoWvRytW7dKn6ozPfhQbigdagawc9WgIY5-tPyUermgiXT_dF8me52M5X6fr25828XKeaCdqnGaEWNFRGccyZZTTXVaW5KPKiskYxYUAAxiqnWWYLSzJLdZ5nyla5MgwKepH8OHL3Q9WC0eD7TjVy37lWdaMMysn3L97tZB3uZcGLHOOrCfD1CdCFv8PUirwLQzdNLUoiaMEYz7F4VdWqAem8DRNMty5qWQrGKbkij6zZf1STGWidDh6sm-LvEr4dE3QXYuzAvhSeYXnYBPm6CZP4y9tWX6TP_07_AeiLrZ0</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Paalvast, Yared</creator><creator>Zhou, Enchen</creator><creator>Rozendaal, Yvonne J W</creator><creator>Wang, Yanan</creator><creator>Gerding, Albert</creator><creator>van Dijk, Theo H</creator><creator>de Boer, Jan Freark</creator><creator>Rensen, Patrick C N</creator><creator>van Dijk, Ko Willems</creator><creator>Kuivenhoven, Jan A</creator><creator>Bakker, Barbara M</creator><creator>van Riel, Natal A W</creator><creator>Groen, Albert K</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8455-4988</orcidid><orcidid>https://orcid.org/0000-0002-0327-0458</orcidid><orcidid>https://orcid.org/0000-0001-6759-3291</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0002-2172-7394</orcidid><orcidid>https://orcid.org/0000-0003-1648-9851</orcidid><orcidid>https://orcid.org/0000-0003-1812-7694</orcidid></search><sort><creationdate>20221121</creationdate><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><author>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Adaptation</topic><topic>Animals</topic><topic>Apolipoprotein E</topic><topic>Apolipoprotein E3 - genetics</topic><topic>Apolipoprotein E3 - metabolism</topic><topic>Apolipoproteins</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Chromatography</topic><topic>Computer applications</topic><topic>Constraint modelling</topic><topic>Deoxycholic acid</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Dyslipidemia</topic><topic>Energy expenditure</topic><topic>Enzyme kinetics</topic><topic>Excretion</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Genetic diversity</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heterogeneity</topic><topic>High cholesterol diet</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Human populations</topic><topic>Inbreeding</topic><topic>Insulin resistance</topic><topic>Intestine</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Longitudinal Studies</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolic Syndrome - genetics</topic><topic>Metabolic Syndrome - metabolism</topic><topic>Mice</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Physiological aspects</topic><topic>Plasma</topic><topic>Solubilization</topic><topic>Systems Analysis</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paalvast, Yared</creatorcontrib><creatorcontrib>Zhou, Enchen</creatorcontrib><creatorcontrib>Rozendaal, Yvonne J W</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>van Dijk, Theo H</creatorcontrib><creatorcontrib>de Boer, Jan Freark</creatorcontrib><creatorcontrib>Rensen, Patrick C N</creatorcontrib><creatorcontrib>van Dijk, Ko Willems</creatorcontrib><creatorcontrib>Kuivenhoven, Jan A</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><creatorcontrib>Groen, Albert K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paalvast, Yared</au><au>Zhou, Enchen</au><au>Rozendaal, Yvonne J W</au><au>Wang, Yanan</au><au>Gerding, Albert</au><au>van Dijk, Theo H</au><au>de Boer, Jan Freark</au><au>Rensen, Patrick C N</au><au>van Dijk, Ko Willems</au><au>Kuivenhoven, Jan A</au><au>Bakker, Barbara M</au><au>van Riel, Natal A W</au><au>Groen, Albert K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2022-11-21</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>4936</spage><pages>4936-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36432620</pmid><doi>10.3390/nu14224936</doi><orcidid>https://orcid.org/0000-0002-8455-4988</orcidid><orcidid>https://orcid.org/0000-0002-0327-0458</orcidid><orcidid>https://orcid.org/0000-0001-6759-3291</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0002-2172-7394</orcidid><orcidid>https://orcid.org/0000-0003-1648-9851</orcidid><orcidid>https://orcid.org/0000-0003-1812-7694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2022-11, Vol.14 (22), p.4936
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698005
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Absorption
Adaptation
Animals
Apolipoprotein E
Apolipoprotein E3 - genetics
Apolipoprotein E3 - metabolism
Apolipoproteins
Bile
Bile acids
Bile Acids and Salts - metabolism
Cholesterol
Cholesterol - metabolism
Cholesterol Ester Transfer Proteins - genetics
Cholesterol Ester Transfer Proteins - metabolism
Chromatography
Computer applications
Constraint modelling
Deoxycholic acid
Diet
Diet, High-Fat - adverse effects
Dyslipidemia
Energy expenditure
Enzyme kinetics
Excretion
Fatty acids
Fatty Acids - metabolism
Genetic diversity
Glucose
Glucose - metabolism
Heterogeneity
High cholesterol diet
High fat diet
Homeostasis
Human populations
Inbreeding
Insulin resistance
Intestine
Lipid metabolism
Lipids
Liver - metabolism
Longitudinal Studies
Metabolic disorders
Metabolic syndrome
Metabolic Syndrome - genetics
Metabolic Syndrome - metabolism
Mice
Phenotype
Phenotypes
Phenotypic variations
Physiological aspects
Plasma
Solubilization
Systems Analysis
Triglycerides
title A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems%20Analysis%20of%20Phenotype%20Heterogeneity%20in%20APOE3Leiden.CETP%20Mice%20Induced%20by%20Long-Term%20High-Fat%20High-Cholesterol%20Diet%20Feeding&rft.jtitle=Nutrients&rft.au=Paalvast,%20Yared&rft.date=2022-11-21&rft.volume=14&rft.issue=22&rft.spage=4936&rft.pages=4936-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu14224936&rft_dat=%3Cgale_pubme%3EA746325205%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739446807&rft_id=info:pmid/36432620&rft_galeid=A746325205&rfr_iscdi=true