A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding
Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice d...
Gespeichert in:
Veröffentlicht in: | Nutrients 2022-11, Vol.14 (22), p.4936 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 4936 |
container_title | Nutrients |
container_volume | 14 |
creator | Paalvast, Yared Zhou, Enchen Rozendaal, Yvonne J W Wang, Yanan Gerding, Albert van Dijk, Theo H de Boer, Jan Freark Rensen, Patrick C N van Dijk, Ko Willems Kuivenhoven, Jan A Bakker, Barbara M van Riel, Natal A W Groen, Albert K |
description | Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice. |
doi_str_mv | 10.3390/nu14224936 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746325205</galeid><sourcerecordid>A746325205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</originalsourceid><addsrcrecordid>eNptkt9r2zAQx03ZaEvXl_0BQ7C3gTNZUiX7ZWDSZClkNLDsWcjSyVGxpcyyC37tXz6n6U-Y7kHH6Xsf7k6XJJ8zPKO0wN_9kDFCWEH5SXJOsCAp54x-eOOfJZcx3uHDEVhwepqc0SlMOMHnyUOJfo-xhzai0qtmjC6iYNFmBz704x7QCnroQg0eXD8i51G5uV3QNTgDfjZfbDfol9OAbrwZNBhUjWgdfJ1uoWvRytW7dKn6ozPfhQbigdagawc9WgIY5-tPyUermgiXT_dF8me52M5X6fr25828XKeaCdqnGaEWNFRGccyZZTTXVaW5KPKiskYxYUAAxiqnWWYLSzJLdZ5nyla5MgwKepH8OHL3Q9WC0eD7TjVy37lWdaMMysn3L97tZB3uZcGLHOOrCfD1CdCFv8PUirwLQzdNLUoiaMEYz7F4VdWqAem8DRNMty5qWQrGKbkij6zZf1STGWidDh6sm-LvEr4dE3QXYuzAvhSeYXnYBPm6CZP4y9tWX6TP_07_AeiLrZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739446807</pqid></control><display><type>article</type><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</creator><creatorcontrib>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</creatorcontrib><description>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu14224936</identifier><identifier>PMID: 36432620</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption ; Adaptation ; Animals ; Apolipoprotein E ; Apolipoprotein E3 - genetics ; Apolipoprotein E3 - metabolism ; Apolipoproteins ; Bile ; Bile acids ; Bile Acids and Salts - metabolism ; Cholesterol ; Cholesterol - metabolism ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Chromatography ; Computer applications ; Constraint modelling ; Deoxycholic acid ; Diet ; Diet, High-Fat - adverse effects ; Dyslipidemia ; Energy expenditure ; Enzyme kinetics ; Excretion ; Fatty acids ; Fatty Acids - metabolism ; Genetic diversity ; Glucose ; Glucose - metabolism ; Heterogeneity ; High cholesterol diet ; High fat diet ; Homeostasis ; Human populations ; Inbreeding ; Insulin resistance ; Intestine ; Lipid metabolism ; Lipids ; Liver - metabolism ; Longitudinal Studies ; Metabolic disorders ; Metabolic syndrome ; Metabolic Syndrome - genetics ; Metabolic Syndrome - metabolism ; Mice ; Phenotype ; Phenotypes ; Phenotypic variations ; Physiological aspects ; Plasma ; Solubilization ; Systems Analysis ; Triglycerides</subject><ispartof>Nutrients, 2022-11, Vol.14 (22), p.4936</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</citedby><cites>FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</cites><orcidid>0000-0002-8455-4988 ; 0000-0002-0327-0458 ; 0000-0001-6759-3291 ; 0000-0001-9375-4730 ; 0000-0002-2172-7394 ; 0000-0003-1648-9851 ; 0000-0003-1812-7694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698005/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698005/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36432620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paalvast, Yared</creatorcontrib><creatorcontrib>Zhou, Enchen</creatorcontrib><creatorcontrib>Rozendaal, Yvonne J W</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>van Dijk, Theo H</creatorcontrib><creatorcontrib>de Boer, Jan Freark</creatorcontrib><creatorcontrib>Rensen, Patrick C N</creatorcontrib><creatorcontrib>van Dijk, Ko Willems</creatorcontrib><creatorcontrib>Kuivenhoven, Jan A</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><creatorcontrib>Groen, Albert K</creatorcontrib><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</description><subject>Absorption</subject><subject>Adaptation</subject><subject>Animals</subject><subject>Apolipoprotein E</subject><subject>Apolipoprotein E3 - genetics</subject><subject>Apolipoprotein E3 - metabolism</subject><subject>Apolipoproteins</subject><subject>Bile</subject><subject>Bile acids</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Chromatography</subject><subject>Computer applications</subject><subject>Constraint modelling</subject><subject>Deoxycholic acid</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Dyslipidemia</subject><subject>Energy expenditure</subject><subject>Enzyme kinetics</subject><subject>Excretion</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Genetic diversity</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Heterogeneity</subject><subject>High cholesterol diet</subject><subject>High fat diet</subject><subject>Homeostasis</subject><subject>Human populations</subject><subject>Inbreeding</subject><subject>Insulin resistance</subject><subject>Intestine</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver - metabolism</subject><subject>Longitudinal Studies</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolic Syndrome - genetics</subject><subject>Metabolic Syndrome - metabolism</subject><subject>Mice</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Physiological aspects</subject><subject>Plasma</subject><subject>Solubilization</subject><subject>Systems Analysis</subject><subject>Triglycerides</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkt9r2zAQx03ZaEvXl_0BQ7C3gTNZUiX7ZWDSZClkNLDsWcjSyVGxpcyyC37tXz6n6U-Y7kHH6Xsf7k6XJJ8zPKO0wN_9kDFCWEH5SXJOsCAp54x-eOOfJZcx3uHDEVhwepqc0SlMOMHnyUOJfo-xhzai0qtmjC6iYNFmBz704x7QCnroQg0eXD8i51G5uV3QNTgDfjZfbDfol9OAbrwZNBhUjWgdfJ1uoWvRytW7dKn6ozPfhQbigdagawc9WgIY5-tPyUermgiXT_dF8me52M5X6fr25828XKeaCdqnGaEWNFRGccyZZTTXVaW5KPKiskYxYUAAxiqnWWYLSzJLdZ5nyla5MgwKepH8OHL3Q9WC0eD7TjVy37lWdaMMysn3L97tZB3uZcGLHOOrCfD1CdCFv8PUirwLQzdNLUoiaMEYz7F4VdWqAem8DRNMty5qWQrGKbkij6zZf1STGWidDh6sm-LvEr4dE3QXYuzAvhSeYXnYBPm6CZP4y9tWX6TP_07_AeiLrZ0</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Paalvast, Yared</creator><creator>Zhou, Enchen</creator><creator>Rozendaal, Yvonne J W</creator><creator>Wang, Yanan</creator><creator>Gerding, Albert</creator><creator>van Dijk, Theo H</creator><creator>de Boer, Jan Freark</creator><creator>Rensen, Patrick C N</creator><creator>van Dijk, Ko Willems</creator><creator>Kuivenhoven, Jan A</creator><creator>Bakker, Barbara M</creator><creator>van Riel, Natal A W</creator><creator>Groen, Albert K</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8455-4988</orcidid><orcidid>https://orcid.org/0000-0002-0327-0458</orcidid><orcidid>https://orcid.org/0000-0001-6759-3291</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0002-2172-7394</orcidid><orcidid>https://orcid.org/0000-0003-1648-9851</orcidid><orcidid>https://orcid.org/0000-0003-1812-7694</orcidid></search><sort><creationdate>20221121</creationdate><title>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</title><author>Paalvast, Yared ; Zhou, Enchen ; Rozendaal, Yvonne J W ; Wang, Yanan ; Gerding, Albert ; van Dijk, Theo H ; de Boer, Jan Freark ; Rensen, Patrick C N ; van Dijk, Ko Willems ; Kuivenhoven, Jan A ; Bakker, Barbara M ; van Riel, Natal A W ; Groen, Albert K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-123fecebda6064f438cbbc67989bfda47de7e00a8311f9f21f3c881afb8ad4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Adaptation</topic><topic>Animals</topic><topic>Apolipoprotein E</topic><topic>Apolipoprotein E3 - genetics</topic><topic>Apolipoprotein E3 - metabolism</topic><topic>Apolipoproteins</topic><topic>Bile</topic><topic>Bile acids</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Chromatography</topic><topic>Computer applications</topic><topic>Constraint modelling</topic><topic>Deoxycholic acid</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Dyslipidemia</topic><topic>Energy expenditure</topic><topic>Enzyme kinetics</topic><topic>Excretion</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Genetic diversity</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Heterogeneity</topic><topic>High cholesterol diet</topic><topic>High fat diet</topic><topic>Homeostasis</topic><topic>Human populations</topic><topic>Inbreeding</topic><topic>Insulin resistance</topic><topic>Intestine</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver - metabolism</topic><topic>Longitudinal Studies</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolic Syndrome - genetics</topic><topic>Metabolic Syndrome - metabolism</topic><topic>Mice</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Physiological aspects</topic><topic>Plasma</topic><topic>Solubilization</topic><topic>Systems Analysis</topic><topic>Triglycerides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paalvast, Yared</creatorcontrib><creatorcontrib>Zhou, Enchen</creatorcontrib><creatorcontrib>Rozendaal, Yvonne J W</creatorcontrib><creatorcontrib>Wang, Yanan</creatorcontrib><creatorcontrib>Gerding, Albert</creatorcontrib><creatorcontrib>van Dijk, Theo H</creatorcontrib><creatorcontrib>de Boer, Jan Freark</creatorcontrib><creatorcontrib>Rensen, Patrick C N</creatorcontrib><creatorcontrib>van Dijk, Ko Willems</creatorcontrib><creatorcontrib>Kuivenhoven, Jan A</creatorcontrib><creatorcontrib>Bakker, Barbara M</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><creatorcontrib>Groen, Albert K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paalvast, Yared</au><au>Zhou, Enchen</au><au>Rozendaal, Yvonne J W</au><au>Wang, Yanan</au><au>Gerding, Albert</au><au>van Dijk, Theo H</au><au>de Boer, Jan Freark</au><au>Rensen, Patrick C N</au><au>van Dijk, Ko Willems</au><au>Kuivenhoven, Jan A</au><au>Bakker, Barbara M</au><au>van Riel, Natal A W</au><au>Groen, Albert K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2022-11-21</date><risdate>2022</risdate><volume>14</volume><issue>22</issue><spage>4936</spage><pages>4936-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36432620</pmid><doi>10.3390/nu14224936</doi><orcidid>https://orcid.org/0000-0002-8455-4988</orcidid><orcidid>https://orcid.org/0000-0002-0327-0458</orcidid><orcidid>https://orcid.org/0000-0001-6759-3291</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0002-2172-7394</orcidid><orcidid>https://orcid.org/0000-0003-1648-9851</orcidid><orcidid>https://orcid.org/0000-0003-1812-7694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2022-11, Vol.14 (22), p.4936 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9698005 |
source | MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Absorption Adaptation Animals Apolipoprotein E Apolipoprotein E3 - genetics Apolipoprotein E3 - metabolism Apolipoproteins Bile Bile acids Bile Acids and Salts - metabolism Cholesterol Cholesterol - metabolism Cholesterol Ester Transfer Proteins - genetics Cholesterol Ester Transfer Proteins - metabolism Chromatography Computer applications Constraint modelling Deoxycholic acid Diet Diet, High-Fat - adverse effects Dyslipidemia Energy expenditure Enzyme kinetics Excretion Fatty acids Fatty Acids - metabolism Genetic diversity Glucose Glucose - metabolism Heterogeneity High cholesterol diet High fat diet Homeostasis Human populations Inbreeding Insulin resistance Intestine Lipid metabolism Lipids Liver - metabolism Longitudinal Studies Metabolic disorders Metabolic syndrome Metabolic Syndrome - genetics Metabolic Syndrome - metabolism Mice Phenotype Phenotypes Phenotypic variations Physiological aspects Plasma Solubilization Systems Analysis Triglycerides |
title | A Systems Analysis of Phenotype Heterogeneity in APOE3Leiden.CETP Mice Induced by Long-Term High-Fat High-Cholesterol Diet Feeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Systems%20Analysis%20of%20Phenotype%20Heterogeneity%20in%20APOE3Leiden.CETP%20Mice%20Induced%20by%20Long-Term%20High-Fat%20High-Cholesterol%20Diet%20Feeding&rft.jtitle=Nutrients&rft.au=Paalvast,%20Yared&rft.date=2022-11-21&rft.volume=14&rft.issue=22&rft.spage=4936&rft.pages=4936-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu14224936&rft_dat=%3Cgale_pubme%3EA746325205%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739446807&rft_id=info:pmid/36432620&rft_galeid=A746325205&rfr_iscdi=true |