Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys
The experimental temperature is 613.15~763.15 K, and the strain rate is 0.01~10 s . The hot compression creep test of the 6082-T6 aluminum alloy sample is carried out by Gleeble-3500 hot compression simulation compressor, and its creep behavior is studied by scanning electron microscope. The results...
Gespeichert in:
Veröffentlicht in: | Materials 2022-11, Vol.15 (22), p.8117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 8117 |
container_title | Materials |
container_volume | 15 |
creator | Zhang, Qinmin Huang, Xiaomin Guo, Ran Chen, Dongyu |
description | The experimental temperature is 613.15~763.15 K, and the strain rate is 0.01~10 s
. The hot compression creep test of the 6082-T6 aluminum alloy sample is carried out by Gleeble-3500 hot compression simulation compressor, and its creep behavior is studied by scanning electron microscope. The results show that the DRX crystal has an irregular shape and that content of the Mg phase, Si phase, and Mn phase in the crystal are the main factors to change the color of DRX crystal. Temperature and strain rate are important factors affecting dynamic recrystallization. Reducing temperature and increasing strain rate will weaken dynamic recrystallization, and DRX critical condition and peak stress (strain) will increase. The constitutive equation of hot creep of 6082 aluminum alloy was established by introducing the work hardening rate-rheological stress curve, and the relationship between DRX critical condition, peak stress (strain) and parameter Z during creep was explored. Based on the Av rami equation, the prediction equation of the DRX volume fraction is established. With the increase of strain, DRX volume fraction is characterized by slow increase, then rapid increase and then slowly increase. In the hot -forming extrusion process of 6082 aluminum alloy, according to the volume fraction prediction equation, the DRX can be reduced, and the internal structure of the material can be optimized by changing the extrusion conditions and particle size. |
doi_str_mv | 10.3390/ma15228117 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745741585</galeid><sourcerecordid>A745741585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-76bed16ce374fabd62a6c20d263f7e6a928b67369965a5f49ed6e0377076c8783</originalsourceid><addsrcrecordid>eNpdkV1rHCEUhqUkNCHJTX9AGOhNKEzi1-h4U9gsbVPYkIuk1-I6Z3YNjm51JrD99TXs5qPVC1-Oj6--HoQ-EXzJmMJXgyENpS0h8gM6JkqJmijOD97pI3SW8yMugzHSUvURHTHBGRGYHaPFwxrSYHw1TwCb6hrW5snFVJnQ7UvztM2j8d79MaOLoYp9NfP17aq-d0VMgwvTUISP23yKDnvjM5zt1xP06_u3h_lNvbj78XM-W9SWYz7WUiyhI8ICk7w3y05QIyzFHRWslyCMou1SSCZKgMY0PVfQCcBMSiyFbWXLTtDXne9mWg7QWQhjMl5vkhtM2uponP53J7i1XsUnrYSiQrFicLE3SPH3BHnUg8sWvDcB4pQ1lRw3uMBNQT__hz7GKYUSr1CsfG_DCS7U5Y5aGQ_ahT6We22ZHQzOxgC9K_WZ5I3kpGmfbb_sDtgUc07Qv76eYP3cWP3W2AKfv8_7ir60kf0FkxicCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739445410</pqid></control><display><type>article</type><title>Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Zhang, Qinmin ; Huang, Xiaomin ; Guo, Ran ; Chen, Dongyu</creator><creatorcontrib>Zhang, Qinmin ; Huang, Xiaomin ; Guo, Ran ; Chen, Dongyu</creatorcontrib><description>The experimental temperature is 613.15~763.15 K, and the strain rate is 0.01~10 s
. The hot compression creep test of the 6082-T6 aluminum alloy sample is carried out by Gleeble-3500 hot compression simulation compressor, and its creep behavior is studied by scanning electron microscope. The results show that the DRX crystal has an irregular shape and that content of the Mg phase, Si phase, and Mn phase in the crystal are the main factors to change the color of DRX crystal. Temperature and strain rate are important factors affecting dynamic recrystallization. Reducing temperature and increasing strain rate will weaken dynamic recrystallization, and DRX critical condition and peak stress (strain) will increase. The constitutive equation of hot creep of 6082 aluminum alloy was established by introducing the work hardening rate-rheological stress curve, and the relationship between DRX critical condition, peak stress (strain) and parameter Z during creep was explored. Based on the Av rami equation, the prediction equation of the DRX volume fraction is established. With the increase of strain, DRX volume fraction is characterized by slow increase, then rapid increase and then slowly increase. In the hot -forming extrusion process of 6082 aluminum alloy, according to the volume fraction prediction equation, the DRX can be reduced, and the internal structure of the material can be optimized by changing the extrusion conditions and particle size.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15228117</identifier><identifier>PMID: 36431603</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Aluminum ; Aluminum alloys ; Aluminum base alloys ; Constitutive equations ; Constitutive relationships ; Creep tests ; Crystallization ; Crystals ; Deformation ; Dynamic recrystallization ; Equilibrium ; Experiments ; Extrusion rate ; Hardening rate ; Heat ; Hot pressing ; Magnesium ; Mechanical properties ; Rheological properties ; Silicon ; Specialty metals industry ; Strain rate ; Temperature ; Thermal simulation ; Work hardening</subject><ispartof>Materials, 2022-11, Vol.15 (22), p.8117</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-76bed16ce374fabd62a6c20d263f7e6a928b67369965a5f49ed6e0377076c8783</cites><orcidid>0000-0002-7588-8919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692693/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692693/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36431603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qinmin</creatorcontrib><creatorcontrib>Huang, Xiaomin</creatorcontrib><creatorcontrib>Guo, Ran</creatorcontrib><creatorcontrib>Chen, Dongyu</creatorcontrib><title>Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The experimental temperature is 613.15~763.15 K, and the strain rate is 0.01~10 s
. The hot compression creep test of the 6082-T6 aluminum alloy sample is carried out by Gleeble-3500 hot compression simulation compressor, and its creep behavior is studied by scanning electron microscope. The results show that the DRX crystal has an irregular shape and that content of the Mg phase, Si phase, and Mn phase in the crystal are the main factors to change the color of DRX crystal. Temperature and strain rate are important factors affecting dynamic recrystallization. Reducing temperature and increasing strain rate will weaken dynamic recrystallization, and DRX critical condition and peak stress (strain) will increase. The constitutive equation of hot creep of 6082 aluminum alloy was established by introducing the work hardening rate-rheological stress curve, and the relationship between DRX critical condition, peak stress (strain) and parameter Z during creep was explored. Based on the Av rami equation, the prediction equation of the DRX volume fraction is established. With the increase of strain, DRX volume fraction is characterized by slow increase, then rapid increase and then slowly increase. In the hot -forming extrusion process of 6082 aluminum alloy, according to the volume fraction prediction equation, the DRX can be reduced, and the internal structure of the material can be optimized by changing the extrusion conditions and particle size.</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Creep tests</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Equilibrium</subject><subject>Experiments</subject><subject>Extrusion rate</subject><subject>Hardening rate</subject><subject>Heat</subject><subject>Hot pressing</subject><subject>Magnesium</subject><subject>Mechanical properties</subject><subject>Rheological properties</subject><subject>Silicon</subject><subject>Specialty metals industry</subject><subject>Strain rate</subject><subject>Temperature</subject><subject>Thermal simulation</subject><subject>Work hardening</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rHCEUhqUkNCHJTX9AGOhNKEzi1-h4U9gsbVPYkIuk1-I6Z3YNjm51JrD99TXs5qPVC1-Oj6--HoQ-EXzJmMJXgyENpS0h8gM6JkqJmijOD97pI3SW8yMugzHSUvURHTHBGRGYHaPFwxrSYHw1TwCb6hrW5snFVJnQ7UvztM2j8d79MaOLoYp9NfP17aq-d0VMgwvTUISP23yKDnvjM5zt1xP06_u3h_lNvbj78XM-W9SWYz7WUiyhI8ICk7w3y05QIyzFHRWslyCMou1SSCZKgMY0PVfQCcBMSiyFbWXLTtDXne9mWg7QWQhjMl5vkhtM2uponP53J7i1XsUnrYSiQrFicLE3SPH3BHnUg8sWvDcB4pQ1lRw3uMBNQT__hz7GKYUSr1CsfG_DCS7U5Y5aGQ_ahT6We22ZHQzOxgC9K_WZ5I3kpGmfbb_sDtgUc07Qv76eYP3cWP3W2AKfv8_7ir60kf0FkxicCg</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Zhang, Qinmin</creator><creator>Huang, Xiaomin</creator><creator>Guo, Ran</creator><creator>Chen, Dongyu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7588-8919</orcidid></search><sort><creationdate>20221116</creationdate><title>Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys</title><author>Zhang, Qinmin ; Huang, Xiaomin ; Guo, Ran ; Chen, Dongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-76bed16ce374fabd62a6c20d263f7e6a928b67369965a5f49ed6e0377076c8783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Creep tests</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Equilibrium</topic><topic>Experiments</topic><topic>Extrusion rate</topic><topic>Hardening rate</topic><topic>Heat</topic><topic>Hot pressing</topic><topic>Magnesium</topic><topic>Mechanical properties</topic><topic>Rheological properties</topic><topic>Silicon</topic><topic>Specialty metals industry</topic><topic>Strain rate</topic><topic>Temperature</topic><topic>Thermal simulation</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qinmin</creatorcontrib><creatorcontrib>Huang, Xiaomin</creatorcontrib><creatorcontrib>Guo, Ran</creatorcontrib><creatorcontrib>Chen, Dongyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qinmin</au><au>Huang, Xiaomin</au><au>Guo, Ran</au><au>Chen, Dongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>15</volume><issue>22</issue><spage>8117</spage><pages>8117-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The experimental temperature is 613.15~763.15 K, and the strain rate is 0.01~10 s
. The hot compression creep test of the 6082-T6 aluminum alloy sample is carried out by Gleeble-3500 hot compression simulation compressor, and its creep behavior is studied by scanning electron microscope. The results show that the DRX crystal has an irregular shape and that content of the Mg phase, Si phase, and Mn phase in the crystal are the main factors to change the color of DRX crystal. Temperature and strain rate are important factors affecting dynamic recrystallization. Reducing temperature and increasing strain rate will weaken dynamic recrystallization, and DRX critical condition and peak stress (strain) will increase. The constitutive equation of hot creep of 6082 aluminum alloy was established by introducing the work hardening rate-rheological stress curve, and the relationship between DRX critical condition, peak stress (strain) and parameter Z during creep was explored. Based on the Av rami equation, the prediction equation of the DRX volume fraction is established. With the increase of strain, DRX volume fraction is characterized by slow increase, then rapid increase and then slowly increase. In the hot -forming extrusion process of 6082 aluminum alloy, according to the volume fraction prediction equation, the DRX can be reduced, and the internal structure of the material can be optimized by changing the extrusion conditions and particle size.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36431603</pmid><doi>10.3390/ma15228117</doi><orcidid>https://orcid.org/0000-0002-7588-8919</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-11, Vol.15 (22), p.8117 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9692693 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloys Aluminum Aluminum alloys Aluminum base alloys Constitutive equations Constitutive relationships Creep tests Crystallization Crystals Deformation Dynamic recrystallization Equilibrium Experiments Extrusion rate Hardening rate Heat Hot pressing Magnesium Mechanical properties Rheological properties Silicon Specialty metals industry Strain rate Temperature Thermal simulation Work hardening |
title | Thermal Creep Behavior and Creep Crystallization of Al-Mg-Si Aluminum Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Creep%20Behavior%20and%20Creep%20Crystallization%20of%20Al-Mg-Si%20Aluminum%20Alloys&rft.jtitle=Materials&rft.au=Zhang,%20Qinmin&rft.date=2022-11-16&rft.volume=15&rft.issue=22&rft.spage=8117&rft.pages=8117-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15228117&rft_dat=%3Cgale_pubme%3EA745741585%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739445410&rft_id=info:pmid/36431603&rft_galeid=A745741585&rfr_iscdi=true |