Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study
This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudina...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2022-11, Vol.19 (22), p.14934 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 14934 |
container_title | International journal of environmental research and public health |
container_volume | 19 |
creator | Silva, Vanderlei Carneiro Gorgulho, Bartira Marchioni, Dirce Maria Alvim, Sheila Maria Giatti, Luana de Araujo, Tânia Aparecida Alonso, Angelica Castilho Santos, Itamar de Souza Lotufo, Paulo Andrade Benseñor, Isabela Martins |
description | This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice. |
doi_str_mv | 10.3390/ijerph192214934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9690822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739427929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-be9ab93c076345d078e057a87817409f722c75f9e6f8339ac910f576811ad8eb3</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS0EomXhzA1Z4sIl1P_ixByQ0qUFpJVALJwtx5l0vUrire2stHyCfux61VKV-mCPND8_zbyH0FtKPnKuyJnbQthtqGKMCsXFM3RKpSSFkIQ-f1SfoFcxbgnhtZDqJTrhUjAlS3qKbn6B9eMIUwcBrw8xwYjPTYQO-wkv_TCY1geT3B7wpRsSBDdd4d4H_BNC9JMZ3N_MfnGQTDjgpts7C59wg5fBx1iswSZ3pHCTr0N0Efsepw3gi9W6Kc6DiW7A6zR3h9foRW-GCG_u3wX6c3nxe_mtWP34-n3ZrAorGE1FC8q0iltSSS7KjlQ1kLIydVXTShDVV4zZquwVyL7ODhmrKOnLStaUmq6Gli_Q5zvd3dyO0FmYUjCD3gU35g20N07_35ncRl_5vVZSkZqxLPDhXiD46xli0qOLFrJTE_g5apbnKGnJ81mg90_QrZ9DduJIcSVYpZjK1NkdZY-eBegfhqFEH1PWT1LOP9493uGB_xcrvwUfBKUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739427929</pqid></control><display><type>article</type><title>Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Silva, Vanderlei Carneiro ; Gorgulho, Bartira ; Marchioni, Dirce Maria ; Alvim, Sheila Maria ; Giatti, Luana ; de Araujo, Tânia Aparecida ; Alonso, Angelica Castilho ; Santos, Itamar de Souza ; Lotufo, Paulo Andrade ; Benseñor, Isabela Martins</creator><creatorcontrib>Silva, Vanderlei Carneiro ; Gorgulho, Bartira ; Marchioni, Dirce Maria ; Alvim, Sheila Maria ; Giatti, Luana ; de Araujo, Tânia Aparecida ; Alonso, Angelica Castilho ; Santos, Itamar de Souza ; Lotufo, Paulo Andrade ; Benseñor, Isabela Martins</creatorcontrib><description>This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph192214934</identifier><identifier>PMID: 36429651</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Animals ; Blood pressure ; Brazil ; Cereals ; Chronic illnesses ; Collaboration ; Cross-Sectional Studies ; Customization ; Dairy products ; Diabetes ; Diet Surveys ; Filtration ; Food ; Food groups ; Health care ; Legumes ; Longitudinal Studies ; Medical personnel ; Milk ; Nutrition ; Oils & fats ; Oilseeds ; Predictions ; Public health ; Questionnaires ; Recommender systems ; Research centers ; Research facilities ; Research institutions ; Root-mean-square errors ; Smoking cessation ; Sociodemographics ; Tubers ; Vegetables</subject><ispartof>International journal of environmental research and public health, 2022-11, Vol.19 (22), p.14934</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-be9ab93c076345d078e057a87817409f722c75f9e6f8339ac910f576811ad8eb3</citedby><cites>FETCH-LOGICAL-c421t-be9ab93c076345d078e057a87817409f722c75f9e6f8339ac910f576811ad8eb3</cites><orcidid>0000-0002-1714-3548 ; 0000-0002-6723-5678 ; 0000-0001-5894-8695 ; 0000-0003-1595-1880 ; 0000-0002-9644-5068 ; 0000-0002-6810-5779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690822/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9690822/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36429651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Vanderlei Carneiro</creatorcontrib><creatorcontrib>Gorgulho, Bartira</creatorcontrib><creatorcontrib>Marchioni, Dirce Maria</creatorcontrib><creatorcontrib>Alvim, Sheila Maria</creatorcontrib><creatorcontrib>Giatti, Luana</creatorcontrib><creatorcontrib>de Araujo, Tânia Aparecida</creatorcontrib><creatorcontrib>Alonso, Angelica Castilho</creatorcontrib><creatorcontrib>Santos, Itamar de Souza</creatorcontrib><creatorcontrib>Lotufo, Paulo Andrade</creatorcontrib><creatorcontrib>Benseñor, Isabela Martins</creatorcontrib><title>Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study</title><title>International journal of environmental research and public health</title><addtitle>Int J Environ Res Public Health</addtitle><description>This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Blood pressure</subject><subject>Brazil</subject><subject>Cereals</subject><subject>Chronic illnesses</subject><subject>Collaboration</subject><subject>Cross-Sectional Studies</subject><subject>Customization</subject><subject>Dairy products</subject><subject>Diabetes</subject><subject>Diet Surveys</subject><subject>Filtration</subject><subject>Food</subject><subject>Food groups</subject><subject>Health care</subject><subject>Legumes</subject><subject>Longitudinal Studies</subject><subject>Medical personnel</subject><subject>Milk</subject><subject>Nutrition</subject><subject>Oils & fats</subject><subject>Oilseeds</subject><subject>Predictions</subject><subject>Public health</subject><subject>Questionnaires</subject><subject>Recommender systems</subject><subject>Research centers</subject><subject>Research facilities</subject><subject>Research institutions</subject><subject>Root-mean-square errors</subject><subject>Smoking cessation</subject><subject>Sociodemographics</subject><subject>Tubers</subject><subject>Vegetables</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU9v1DAQxS0EomXhzA1Z4sIl1P_ixByQ0qUFpJVALJwtx5l0vUrire2stHyCfux61VKV-mCPND8_zbyH0FtKPnKuyJnbQthtqGKMCsXFM3RKpSSFkIQ-f1SfoFcxbgnhtZDqJTrhUjAlS3qKbn6B9eMIUwcBrw8xwYjPTYQO-wkv_TCY1geT3B7wpRsSBDdd4d4H_BNC9JMZ3N_MfnGQTDjgpts7C59wg5fBx1iswSZ3pHCTr0N0Efsepw3gi9W6Kc6DiW7A6zR3h9foRW-GCG_u3wX6c3nxe_mtWP34-n3ZrAorGE1FC8q0iltSSS7KjlQ1kLIydVXTShDVV4zZquwVyL7ODhmrKOnLStaUmq6Gli_Q5zvd3dyO0FmYUjCD3gU35g20N07_35ncRl_5vVZSkZqxLPDhXiD46xli0qOLFrJTE_g5apbnKGnJ81mg90_QrZ9DduJIcSVYpZjK1NkdZY-eBegfhqFEH1PWT1LOP9493uGB_xcrvwUfBKUw</recordid><startdate>20221113</startdate><enddate>20221113</enddate><creator>Silva, Vanderlei Carneiro</creator><creator>Gorgulho, Bartira</creator><creator>Marchioni, Dirce Maria</creator><creator>Alvim, Sheila Maria</creator><creator>Giatti, Luana</creator><creator>de Araujo, Tânia Aparecida</creator><creator>Alonso, Angelica Castilho</creator><creator>Santos, Itamar de Souza</creator><creator>Lotufo, Paulo Andrade</creator><creator>Benseñor, Isabela Martins</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1714-3548</orcidid><orcidid>https://orcid.org/0000-0002-6723-5678</orcidid><orcidid>https://orcid.org/0000-0001-5894-8695</orcidid><orcidid>https://orcid.org/0000-0003-1595-1880</orcidid><orcidid>https://orcid.org/0000-0002-9644-5068</orcidid><orcidid>https://orcid.org/0000-0002-6810-5779</orcidid></search><sort><creationdate>20221113</creationdate><title>Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study</title><author>Silva, Vanderlei Carneiro ; Gorgulho, Bartira ; Marchioni, Dirce Maria ; Alvim, Sheila Maria ; Giatti, Luana ; de Araujo, Tânia Aparecida ; Alonso, Angelica Castilho ; Santos, Itamar de Souza ; Lotufo, Paulo Andrade ; Benseñor, Isabela Martins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-be9ab93c076345d078e057a87817409f722c75f9e6f8339ac910f576811ad8eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Blood pressure</topic><topic>Brazil</topic><topic>Cereals</topic><topic>Chronic illnesses</topic><topic>Collaboration</topic><topic>Cross-Sectional Studies</topic><topic>Customization</topic><topic>Dairy products</topic><topic>Diabetes</topic><topic>Diet Surveys</topic><topic>Filtration</topic><topic>Food</topic><topic>Food groups</topic><topic>Health care</topic><topic>Legumes</topic><topic>Longitudinal Studies</topic><topic>Medical personnel</topic><topic>Milk</topic><topic>Nutrition</topic><topic>Oils & fats</topic><topic>Oilseeds</topic><topic>Predictions</topic><topic>Public health</topic><topic>Questionnaires</topic><topic>Recommender systems</topic><topic>Research centers</topic><topic>Research facilities</topic><topic>Research institutions</topic><topic>Root-mean-square errors</topic><topic>Smoking cessation</topic><topic>Sociodemographics</topic><topic>Tubers</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Vanderlei Carneiro</creatorcontrib><creatorcontrib>Gorgulho, Bartira</creatorcontrib><creatorcontrib>Marchioni, Dirce Maria</creatorcontrib><creatorcontrib>Alvim, Sheila Maria</creatorcontrib><creatorcontrib>Giatti, Luana</creatorcontrib><creatorcontrib>de Araujo, Tânia Aparecida</creatorcontrib><creatorcontrib>Alonso, Angelica Castilho</creatorcontrib><creatorcontrib>Santos, Itamar de Souza</creatorcontrib><creatorcontrib>Lotufo, Paulo Andrade</creatorcontrib><creatorcontrib>Benseñor, Isabela Martins</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Vanderlei Carneiro</au><au>Gorgulho, Bartira</au><au>Marchioni, Dirce Maria</au><au>Alvim, Sheila Maria</au><au>Giatti, Luana</au><au>de Araujo, Tânia Aparecida</au><au>Alonso, Angelica Castilho</au><au>Santos, Itamar de Souza</au><au>Lotufo, Paulo Andrade</au><au>Benseñor, Isabela Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study</atitle><jtitle>International journal of environmental research and public health</jtitle><addtitle>Int J Environ Res Public Health</addtitle><date>2022-11-13</date><risdate>2022</risdate><volume>19</volume><issue>22</issue><spage>14934</spage><pages>14934-</pages><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>This study aimed to predict dietary recommendations and compare the performance of algorithms based on collaborative filtering for making predictions of personalized dietary recommendations. We analyzed the baseline cross-sectional data (2008-2010) of 12,667 participants of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). The participants were public employees of teaching and research institutions, aged 35-74 years, and 59% female. A semiquantitative Food Frequency Questionnaire (FFQ) was used for dietary assessment. The predictions of dietary recommendations were based on two machine learning (ML) algorithms-user-based collaborative filtering (UBCF) and item-based collaborative filtering (IBCF). The ML algorithms had similar precision (88-91%). The error metrics were lower for UBCF than for IBCF: with a root mean square error (RMSE) of 1.49 vs. 1.67 and a mean square error (MSE) of 2.21 vs. 2.78. Although all food groups were used as input in the system, the items eligible as recommendations included whole cereals, tubers and roots, beans and other legumes, oilseeds, fruits, vegetables, white meats and fish, and low-fat dairy products and milk. The algorithms' performances were similar in making predictions for dietary recommendations. The models presented can provide support for health professionals in interventions that promote healthier habits and improve adherence to this personalized dietary advice.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36429651</pmid><doi>10.3390/ijerph192214934</doi><orcidid>https://orcid.org/0000-0002-1714-3548</orcidid><orcidid>https://orcid.org/0000-0002-6723-5678</orcidid><orcidid>https://orcid.org/0000-0001-5894-8695</orcidid><orcidid>https://orcid.org/0000-0003-1595-1880</orcidid><orcidid>https://orcid.org/0000-0002-9644-5068</orcidid><orcidid>https://orcid.org/0000-0002-6810-5779</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2022-11, Vol.19 (22), p.14934 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9690822 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Algorithms Animals Blood pressure Brazil Cereals Chronic illnesses Collaboration Cross-Sectional Studies Customization Dairy products Diabetes Diet Surveys Filtration Food Food groups Health care Legumes Longitudinal Studies Medical personnel Milk Nutrition Oils & fats Oilseeds Predictions Public health Questionnaires Recommender systems Research centers Research facilities Research institutions Root-mean-square errors Smoking cessation Sociodemographics Tubers Vegetables |
title | Recommender System Based on Collaborative Filtering for Personalized Dietary Advice: A Cross-Sectional Analysis of the ELSA-Brasil Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommender%20System%20Based%20on%20Collaborative%20Filtering%20for%20Personalized%20Dietary%20Advice:%20A%20Cross-Sectional%20Analysis%20of%20the%20ELSA-Brasil%20Study&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Silva,%20Vanderlei%20Carneiro&rft.date=2022-11-13&rft.volume=19&rft.issue=22&rft.spage=14934&rft.pages=14934-&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph192214934&rft_dat=%3Cproquest_pubme%3E2739427929%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739427929&rft_id=info:pmid/36429651&rfr_iscdi=true |