A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)

High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-11, Vol.8 (47), p.eade0640-eade0640
Hauptverfasser: Zhang, Jinxin, Chen, Chuyi, Becker, Ryan, Rufo, Joseph, Yang, Shujie, Mai, John, Zhang, Peiran, Gu, Yuyang, Wang, Zeyu, Ma, Zhehan, Xia, Jianping, Hao, Nanjing, Tian, Zhenhua, Wong, David T W, Sadovsky, Yoel, Lee, Luke P, Huang, Tony Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eade0640
container_issue 47
container_start_page eade0640
container_title Science advances
container_volume 8
creator Zhang, Jinxin
Chen, Chuyi
Becker, Ryan
Rufo, Joseph
Yang, Shujie
Mai, John
Zhang, Peiran
Gu, Yuyang
Wang, Zeyu
Ma, Zhehan
Xia, Jianping
Hao, Nanjing
Tian, Zhenhua
Wong, David T W
Sadovsky, Yoel
Lee, Luke P
Huang, Tony Jun
description High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (96% small exosomes, >80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.
doi_str_mv 10.1126/sciadv.ade0640
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9683722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2739741617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-e1d7cc3c74f57a72e57af0876d35931a1ce82bbfa111524aa6f9203fef12321d3</originalsourceid><addsrcrecordid>eNpVUUtv1DAQthAVrdpeOSIfyyGLH4m94YC0qpaCVBWpBfVozTpj1sgbhziJ2r_BL66XLFW5eCx_j_HMR8hbzhacC_UhWQ_NtIAGmSrZK3IipK4KUZXL1y_ux-Q8pV-MMV4qVfH6DTmWquS6YtUJ-bOiKYZx8LGlQ6TDFunGx277mLyFQF0Pdo_BX0J0FB-G_IQhjAF6OmGmBUwf6crGMQ3e0htoY8pSpHfYQT8LJw_0HiYsOh_2uvWD9cMM3WLK9q1FerG6ubtf374_I0cOQsLzQz0lPz6vv19-Ka6_XX29XF0XVtZsKJA32lppdekqDVpgPh1batXIqpYcuMWl2GwccM4rUQIoVwsmHToupOCNPCWfZt9u3Oywsdjm0YLper-D_tFE8OZ_pPVb8zNOplZLqYXIBhcHgz7-HjENZufTfjfQYt6GEVrWuuSK60xdzFTbx5R6dM9tODP7LM2cpTlkmQXvXn7umf4vOfkEzuugSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739741617</pqid></control><display><type>article</type><title>A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Jinxin ; Chen, Chuyi ; Becker, Ryan ; Rufo, Joseph ; Yang, Shujie ; Mai, John ; Zhang, Peiran ; Gu, Yuyang ; Wang, Zeyu ; Ma, Zhehan ; Xia, Jianping ; Hao, Nanjing ; Tian, Zhenhua ; Wong, David T W ; Sadovsky, Yoel ; Lee, Luke P ; Huang, Tony Jun</creator><creatorcontrib>Zhang, Jinxin ; Chen, Chuyi ; Becker, Ryan ; Rufo, Joseph ; Yang, Shujie ; Mai, John ; Zhang, Peiran ; Gu, Yuyang ; Wang, Zeyu ; Ma, Zhehan ; Xia, Jianping ; Hao, Nanjing ; Tian, Zhenhua ; Wong, David T W ; Sadovsky, Yoel ; Lee, Luke P ; Huang, Tony Jun</creatorcontrib><description>High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (&lt;10 min), high-purity (&gt;96% small exosomes, &gt;80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ade0640</identifier><identifier>PMID: 36417505</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Applied Physics ; Applied Sciences and Engineering ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-11, Vol.8 (47), p.eade0640-eade0640</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-e1d7cc3c74f57a72e57af0876d35931a1ce82bbfa111524aa6f9203fef12321d3</citedby><cites>FETCH-LOGICAL-c390t-e1d7cc3c74f57a72e57af0876d35931a1ce82bbfa111524aa6f9203fef12321d3</cites><orcidid>0000-0001-5733-4261 ; 0000-0002-3873-9949 ; 0000-0002-6545-2521 ; 0000-0003-3808-7941 ; 0000-0003-2626-3397 ; 0000-0002-0855-322X ; 0000-0002-0290-2206 ; 0000-0001-6492-8519 ; 0000-0001-9335-2694 ; 0000-0003-2969-6737 ; 0000-0003-1205-3313 ; 0000-0002-1903-5604 ; 0000-0002-1436-4054 ; 0000-0001-7408-2393 ; 0000-0001-8001-9120 ; 0000-0001-9902-0228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683722/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683722/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36417505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jinxin</creatorcontrib><creatorcontrib>Chen, Chuyi</creatorcontrib><creatorcontrib>Becker, Ryan</creatorcontrib><creatorcontrib>Rufo, Joseph</creatorcontrib><creatorcontrib>Yang, Shujie</creatorcontrib><creatorcontrib>Mai, John</creatorcontrib><creatorcontrib>Zhang, Peiran</creatorcontrib><creatorcontrib>Gu, Yuyang</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Ma, Zhehan</creatorcontrib><creatorcontrib>Xia, Jianping</creatorcontrib><creatorcontrib>Hao, Nanjing</creatorcontrib><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Wong, David T W</creatorcontrib><creatorcontrib>Sadovsky, Yoel</creatorcontrib><creatorcontrib>Lee, Luke P</creatorcontrib><creatorcontrib>Huang, Tony Jun</creatorcontrib><title>A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (&lt;10 min), high-purity (&gt;96% small exosomes, &gt;80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.</description><subject>Applied Physics</subject><subject>Applied Sciences and Engineering</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUUtv1DAQthAVrdpeOSIfyyGLH4m94YC0qpaCVBWpBfVozTpj1sgbhziJ2r_BL66XLFW5eCx_j_HMR8hbzhacC_UhWQ_NtIAGmSrZK3IipK4KUZXL1y_ux-Q8pV-MMV4qVfH6DTmWquS6YtUJ-bOiKYZx8LGlQ6TDFunGx277mLyFQF0Pdo_BX0J0FB-G_IQhjAF6OmGmBUwf6crGMQ3e0htoY8pSpHfYQT8LJw_0HiYsOh_2uvWD9cMM3WLK9q1FerG6ubtf374_I0cOQsLzQz0lPz6vv19-Ka6_XX29XF0XVtZsKJA32lppdekqDVpgPh1batXIqpYcuMWl2GwccM4rUQIoVwsmHToupOCNPCWfZt9u3Oywsdjm0YLper-D_tFE8OZ_pPVb8zNOplZLqYXIBhcHgz7-HjENZufTfjfQYt6GEVrWuuSK60xdzFTbx5R6dM9tODP7LM2cpTlkmQXvXn7umf4vOfkEzuugSA</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Zhang, Jinxin</creator><creator>Chen, Chuyi</creator><creator>Becker, Ryan</creator><creator>Rufo, Joseph</creator><creator>Yang, Shujie</creator><creator>Mai, John</creator><creator>Zhang, Peiran</creator><creator>Gu, Yuyang</creator><creator>Wang, Zeyu</creator><creator>Ma, Zhehan</creator><creator>Xia, Jianping</creator><creator>Hao, Nanjing</creator><creator>Tian, Zhenhua</creator><creator>Wong, David T W</creator><creator>Sadovsky, Yoel</creator><creator>Lee, Luke P</creator><creator>Huang, Tony Jun</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5733-4261</orcidid><orcidid>https://orcid.org/0000-0002-3873-9949</orcidid><orcidid>https://orcid.org/0000-0002-6545-2521</orcidid><orcidid>https://orcid.org/0000-0003-3808-7941</orcidid><orcidid>https://orcid.org/0000-0003-2626-3397</orcidid><orcidid>https://orcid.org/0000-0002-0855-322X</orcidid><orcidid>https://orcid.org/0000-0002-0290-2206</orcidid><orcidid>https://orcid.org/0000-0001-6492-8519</orcidid><orcidid>https://orcid.org/0000-0001-9335-2694</orcidid><orcidid>https://orcid.org/0000-0003-2969-6737</orcidid><orcidid>https://orcid.org/0000-0003-1205-3313</orcidid><orcidid>https://orcid.org/0000-0002-1903-5604</orcidid><orcidid>https://orcid.org/0000-0002-1436-4054</orcidid><orcidid>https://orcid.org/0000-0001-7408-2393</orcidid><orcidid>https://orcid.org/0000-0001-8001-9120</orcidid><orcidid>https://orcid.org/0000-0001-9902-0228</orcidid></search><sort><creationdate>20221125</creationdate><title>A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)</title><author>Zhang, Jinxin ; Chen, Chuyi ; Becker, Ryan ; Rufo, Joseph ; Yang, Shujie ; Mai, John ; Zhang, Peiran ; Gu, Yuyang ; Wang, Zeyu ; Ma, Zhehan ; Xia, Jianping ; Hao, Nanjing ; Tian, Zhenhua ; Wong, David T W ; Sadovsky, Yoel ; Lee, Luke P ; Huang, Tony Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-e1d7cc3c74f57a72e57af0876d35931a1ce82bbfa111524aa6f9203fef12321d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Physics</topic><topic>Applied Sciences and Engineering</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinxin</creatorcontrib><creatorcontrib>Chen, Chuyi</creatorcontrib><creatorcontrib>Becker, Ryan</creatorcontrib><creatorcontrib>Rufo, Joseph</creatorcontrib><creatorcontrib>Yang, Shujie</creatorcontrib><creatorcontrib>Mai, John</creatorcontrib><creatorcontrib>Zhang, Peiran</creatorcontrib><creatorcontrib>Gu, Yuyang</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Ma, Zhehan</creatorcontrib><creatorcontrib>Xia, Jianping</creatorcontrib><creatorcontrib>Hao, Nanjing</creatorcontrib><creatorcontrib>Tian, Zhenhua</creatorcontrib><creatorcontrib>Wong, David T W</creatorcontrib><creatorcontrib>Sadovsky, Yoel</creatorcontrib><creatorcontrib>Lee, Luke P</creatorcontrib><creatorcontrib>Huang, Tony Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinxin</au><au>Chen, Chuyi</au><au>Becker, Ryan</au><au>Rufo, Joseph</au><au>Yang, Shujie</au><au>Mai, John</au><au>Zhang, Peiran</au><au>Gu, Yuyang</au><au>Wang, Zeyu</au><au>Ma, Zhehan</au><au>Xia, Jianping</au><au>Hao, Nanjing</au><au>Tian, Zhenhua</au><au>Wong, David T W</au><au>Sadovsky, Yoel</au><au>Lee, Luke P</au><au>Huang, Tony Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-11-25</date><risdate>2022</risdate><volume>8</volume><issue>47</issue><spage>eade0640</spage><epage>eade0640</epage><pages>eade0640-eade0640</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>High-precision isolation of small extracellular vesicles (sEVs) from biofluids is essential toward developing next-generation liquid biopsies and regenerative therapies. However, current methods of sEV separation require specialized equipment and time-consuming protocols and have difficulties producing highly pure subpopulations of sEVs. Here, we present Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER), which allows single-step, rapid (&lt;10 min), high-purity (&gt;96% small exosomes, &gt;80% exomeres) fractionation of sEV subpopulations from biofluids without the need for any sample preprocessing. Particles are iteratively deflected in a size-selective manner via an excitation resonance. This previously unidentified phenomenon generates patterns of virtual, tunable, pillar-like acoustic field in a fluid using surface acoustic waves. Highly precise sEV fractionation without the need for sample preprocessing or complex nanofabrication methods has been demonstrated using ANSWER, showing potential as a powerful tool that will enable more in-depth studies into the complexity, heterogeneity, and functionality of sEV subpopulations.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>36417505</pmid><doi>10.1126/sciadv.ade0640</doi><orcidid>https://orcid.org/0000-0001-5733-4261</orcidid><orcidid>https://orcid.org/0000-0002-3873-9949</orcidid><orcidid>https://orcid.org/0000-0002-6545-2521</orcidid><orcidid>https://orcid.org/0000-0003-3808-7941</orcidid><orcidid>https://orcid.org/0000-0003-2626-3397</orcidid><orcidid>https://orcid.org/0000-0002-0855-322X</orcidid><orcidid>https://orcid.org/0000-0002-0290-2206</orcidid><orcidid>https://orcid.org/0000-0001-6492-8519</orcidid><orcidid>https://orcid.org/0000-0001-9335-2694</orcidid><orcidid>https://orcid.org/0000-0003-2969-6737</orcidid><orcidid>https://orcid.org/0000-0003-1205-3313</orcidid><orcidid>https://orcid.org/0000-0002-1903-5604</orcidid><orcidid>https://orcid.org/0000-0002-1436-4054</orcidid><orcidid>https://orcid.org/0000-0001-7408-2393</orcidid><orcidid>https://orcid.org/0000-0001-8001-9120</orcidid><orcidid>https://orcid.org/0000-0001-9902-0228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-11, Vol.8 (47), p.eade0640-eade0640
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9683722
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Applied Physics
Applied Sciences and Engineering
Physical and Materials Sciences
SciAdv r-articles
title A solution to the biophysical fractionation of extracellular vesicles: Acoustic Nanoscale Separation via Wave-pillar Excitation Resonance (ANSWER)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20solution%20to%20the%20biophysical%20fractionation%20of%20extracellular%20vesicles:%20Acoustic%20Nanoscale%20Separation%20via%20Wave-pillar%20Excitation%20Resonance%20(ANSWER)&rft.jtitle=Science%20advances&rft.au=Zhang,%20Jinxin&rft.date=2022-11-25&rft.volume=8&rft.issue=47&rft.spage=eade0640&rft.epage=eade0640&rft.pages=eade0640-eade0640&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ade0640&rft_dat=%3Cproquest_pubme%3E2739741617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739741617&rft_id=info:pmid/36417505&rfr_iscdi=true