A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase
The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechani...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2022-12, Vol.298 (12), p.102626-102626, Article 102626 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102626 |
---|---|
container_issue | 12 |
container_start_page | 102626 |
container_title | The Journal of biological chemistry |
container_volume | 298 |
creator | Lynch, Joseph H. Roje, Sanja |
description | The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechanisms remain poorly understood. Here, we report the cloning and biochemical characterization of an FAD synthetase encoded by the gene At5g03430, which we have designated AtFADS1 (A. thaliana FADS1). The catalytic properties of the FAD synthetase activity are similar to those reported for other FAD synthetases, except that we observed maximum activity with Zn2+ as the associated divalent metal cation. Like human FAD synthetase, AtFADS1 exists as an apparent fusion with an ancestral FAD pyrophosphatase, a feature that is conserved across plants. However, we detected no pyrophosphatase activity with AtFADS1, consistent with an observed loss of a key catalytic residue in higher plant evolutionary history. In contrast, we determined that algal FADS1 retains both FAD synthetase and pyrophosphatase activity. We discuss the implications, including the potential for yet-unstudied biologically relevant noncatalytic functions, and possible evolutionary pressures that have led to the loss of FAD pyrophosphatase activity, yet universal retention of an apparently nonfunctional domain in FADS of land plants. |
doi_str_mv | 10.1016/j.jbc.2022.102626 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9678776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822010699</els_id><sourcerecordid>2728144774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-78ace4b8f110361b7a49780614bce52f8f80f15679f112b213b67af409cc59083</originalsourceid><addsrcrecordid>eNp9kUFvGyEQhVGUKHac_IBeIo65rAssC6wiVbLSOIlkqZdW6g2xeNaLZS9bwJb874tl12ov5YKAbx4z7yH0iZIpJVR8Xk_XjZ0ywlg-M8HEFRpTosqirOjPazQmhNGiZpUaobsY1yQvXtNbNCoFk2WlxBgtZrhzqw4CHjamT3g--4rjoU8dJBMBu4jbXYQlTh6bHrve2OT2JuWbIzkcgh86H4fOHPF7dNOaTYSH8z5BP-av31_ei8W3t4-X2aKwnJSpkMpY4I1qKSWloI00vJaKCMobCxVrVatISysh60ywhtGyEdK0nNTWVnWeb4K-nHSHXbOFpYU-BbPRQ3BbEw7aG6f_feldp1d-r2shlZQiCzydBYL_tYOY9NZFC5tsAfhd1EwyRTmXkmeUnlAbfIwB2ss3lOhjCnqtcwr6mII-pZBrHv_u71Lxx_YMPJ8AyC7tHQQdrYPewtIFsEkvvfuP_G9chJdg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728144774</pqid></control><display><type>article</type><title>A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lynch, Joseph H. ; Roje, Sanja</creator><creatorcontrib>Lynch, Joseph H. ; Roje, Sanja</creatorcontrib><description>The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechanisms remain poorly understood. Here, we report the cloning and biochemical characterization of an FAD synthetase encoded by the gene At5g03430, which we have designated AtFADS1 (A. thaliana FADS1). The catalytic properties of the FAD synthetase activity are similar to those reported for other FAD synthetases, except that we observed maximum activity with Zn2+ as the associated divalent metal cation. Like human FAD synthetase, AtFADS1 exists as an apparent fusion with an ancestral FAD pyrophosphatase, a feature that is conserved across plants. However, we detected no pyrophosphatase activity with AtFADS1, consistent with an observed loss of a key catalytic residue in higher plant evolutionary history. In contrast, we determined that algal FADS1 retains both FAD synthetase and pyrophosphatase activity. We discuss the implications, including the potential for yet-unstudied biologically relevant noncatalytic functions, and possible evolutionary pressures that have led to the loss of FAD pyrophosphatase activity, yet universal retention of an apparently nonfunctional domain in FADS of land plants.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102626</identifier><identifier>PMID: 36273586</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - chemistry ; Chlamydomonas ; flavin ; flavin adenine dinucleotide ; Flavin Mononucleotide - chemistry ; Flavin-Adenine Dinucleotide - chemistry ; FMN ; Plants - enzymology ; Plants - genetics ; Riboflavin ; vitamin</subject><ispartof>The Journal of biological chemistry, 2022-12, Vol.298 (12), p.102626-102626, Article 102626</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c403t-78ace4b8f110361b7a49780614bce52f8f80f15679f112b213b67af409cc59083</cites><orcidid>0000-0003-0685-1562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36273586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lynch, Joseph H.</creatorcontrib><creatorcontrib>Roje, Sanja</creatorcontrib><title>A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechanisms remain poorly understood. Here, we report the cloning and biochemical characterization of an FAD synthetase encoded by the gene At5g03430, which we have designated AtFADS1 (A. thaliana FADS1). The catalytic properties of the FAD synthetase activity are similar to those reported for other FAD synthetases, except that we observed maximum activity with Zn2+ as the associated divalent metal cation. Like human FAD synthetase, AtFADS1 exists as an apparent fusion with an ancestral FAD pyrophosphatase, a feature that is conserved across plants. However, we detected no pyrophosphatase activity with AtFADS1, consistent with an observed loss of a key catalytic residue in higher plant evolutionary history. In contrast, we determined that algal FADS1 retains both FAD synthetase and pyrophosphatase activity. We discuss the implications, including the potential for yet-unstudied biologically relevant noncatalytic functions, and possible evolutionary pressures that have led to the loss of FAD pyrophosphatase activity, yet universal retention of an apparently nonfunctional domain in FADS of land plants.</description><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Chlamydomonas</subject><subject>flavin</subject><subject>flavin adenine dinucleotide</subject><subject>Flavin Mononucleotide - chemistry</subject><subject>Flavin-Adenine Dinucleotide - chemistry</subject><subject>FMN</subject><subject>Plants - enzymology</subject><subject>Plants - genetics</subject><subject>Riboflavin</subject><subject>vitamin</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFvGyEQhVGUKHac_IBeIo65rAssC6wiVbLSOIlkqZdW6g2xeNaLZS9bwJb874tl12ov5YKAbx4z7yH0iZIpJVR8Xk_XjZ0ywlg-M8HEFRpTosqirOjPazQmhNGiZpUaobsY1yQvXtNbNCoFk2WlxBgtZrhzqw4CHjamT3g--4rjoU8dJBMBu4jbXYQlTh6bHrve2OT2JuWbIzkcgh86H4fOHPF7dNOaTYSH8z5BP-av31_ei8W3t4-X2aKwnJSpkMpY4I1qKSWloI00vJaKCMobCxVrVatISysh60ywhtGyEdK0nNTWVnWeb4K-nHSHXbOFpYU-BbPRQ3BbEw7aG6f_feldp1d-r2shlZQiCzydBYL_tYOY9NZFC5tsAfhd1EwyRTmXkmeUnlAbfIwB2ss3lOhjCnqtcwr6mII-pZBrHv_u71Lxx_YMPJ8AyC7tHQQdrYPewtIFsEkvvfuP_G9chJdg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Lynch, Joseph H.</creator><creator>Roje, Sanja</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0685-1562</orcidid></search><sort><creationdate>20221201</creationdate><title>A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase</title><author>Lynch, Joseph H. ; Roje, Sanja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-78ace4b8f110361b7a49780614bce52f8f80f15679f112b213b67af409cc59083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Chlamydomonas</topic><topic>flavin</topic><topic>flavin adenine dinucleotide</topic><topic>Flavin Mononucleotide - chemistry</topic><topic>Flavin-Adenine Dinucleotide - chemistry</topic><topic>FMN</topic><topic>Plants - enzymology</topic><topic>Plants - genetics</topic><topic>Riboflavin</topic><topic>vitamin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lynch, Joseph H.</creatorcontrib><creatorcontrib>Roje, Sanja</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lynch, Joseph H.</au><au>Roje, Sanja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>298</volume><issue>12</issue><spage>102626</spage><epage>102626</epage><pages>102626-102626</pages><artnum>102626</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechanisms remain poorly understood. Here, we report the cloning and biochemical characterization of an FAD synthetase encoded by the gene At5g03430, which we have designated AtFADS1 (A. thaliana FADS1). The catalytic properties of the FAD synthetase activity are similar to those reported for other FAD synthetases, except that we observed maximum activity with Zn2+ as the associated divalent metal cation. Like human FAD synthetase, AtFADS1 exists as an apparent fusion with an ancestral FAD pyrophosphatase, a feature that is conserved across plants. However, we detected no pyrophosphatase activity with AtFADS1, consistent with an observed loss of a key catalytic residue in higher plant evolutionary history. In contrast, we determined that algal FADS1 retains both FAD synthetase and pyrophosphatase activity. We discuss the implications, including the potential for yet-unstudied biologically relevant noncatalytic functions, and possible evolutionary pressures that have led to the loss of FAD pyrophosphatase activity, yet universal retention of an apparently nonfunctional domain in FADS of land plants.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36273586</pmid><doi>10.1016/j.jbc.2022.102626</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0685-1562</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2022-12, Vol.298 (12), p.102626-102626, Article 102626 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9678776 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - chemistry Chlamydomonas flavin flavin adenine dinucleotide Flavin Mononucleotide - chemistry Flavin-Adenine Dinucleotide - chemistry FMN Plants - enzymology Plants - genetics Riboflavin vitamin |
title | A higher plant FAD synthetase is fused to an inactivated FAD pyrophosphatase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20higher%20plant%20FAD%20synthetase%20is%20fused%20to%20an%20inactivated%20FAD%20pyrophosphatase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lynch,%20Joseph%20H.&rft.date=2022-12-01&rft.volume=298&rft.issue=12&rft.spage=102626&rft.epage=102626&rft.pages=102626-102626&rft.artnum=102626&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102626&rft_dat=%3Cproquest_pubme%3E2728144774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728144774&rft_id=info:pmid/36273586&rft_els_id=S0021925822010699&rfr_iscdi=true |