A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans

Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly into...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (46), p.1-10
Hauptverfasser: Lindsay, Jonathan H., Mathies, Laura D., Davies, Andrew G., Bettinger, Jill C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 46
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Lindsay, Jonathan H.
Mathies, Laura D.
Davies, Andrew G.
Bettinger, Jill C.
description Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.
doi_str_mv 10.1073/pnas.2210462119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209383</jstor_id><sourcerecordid>27209383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</originalsourceid><addsrcrecordid>eNpdkcuLFDEQh4Mo7rh69qQEvHiZ3bw66VyEZfAFC170HKqT6pkMPUmbdAvz39vjrOPjFKj66iNVP0JecnbDmZG3Y4J6IwRnSgvO7SOy4szytVaWPSYrxoRZt0qoK_Ks1j1jzDYte0qupJZKikavyP6OJpxLHnGcYkBa4zbBQH1OPZZKcdpBygOtE0xIA46YAiZ_pGEuMW1pHnrwUy5HOiCUdCrFRDeAKZcddCFOcZEMuIVUn5MnPQwVXzy81-Tbh_dfN5_W918-ft7c3a-9UnJaN7z1QZleCmiazjKvQi98ZyyAajUwJTxCqzV2IEJjGRdaG6sthKY1vAN5Td6dvePcHTB4TFOBwY0lHqAcXYbo_u2kuHPb_MNZbZSQZhG8fRCU_H3GOrlDrB6HARLmuTphpOJaN0Yu6Jv_0H2ey3LBX5ThWizGhbo9U77kWgv2l89w5k45ulOO7k-Oy8Trv3e48L-DW4BXZ2Bfl_Nf-sIIZmUr5U9OCKVz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737162423</pqid></control><display><type>article</type><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</creator><creatorcontrib>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</creatorcontrib><description>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2210462119</identifier><identifier>PMID: 36343256</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alcohol ; Alcoholic Intoxication ; Alcoholism ; Animals ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Circuits ; Dopamine ; Ethanol ; Ethanol - metabolism ; Intoxication ; Kinases ; Learning ; Nematodes ; Neuropeptides - metabolism ; Olfactory discrimination learning ; Protein-tyrosine kinase receptors ; Protein-Tyrosine Kinases - metabolism ; Recall ; State-dependent learning ; Tyrosine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</citedby><cites>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</cites><orcidid>0000-0002-2976-2653 ; 0000-0002-2749-6531 ; 0000-0002-3173-1127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36343256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindsay, Jonathan H.</creatorcontrib><creatorcontrib>Mathies, Laura D.</creatorcontrib><creatorcontrib>Davies, Andrew G.</creatorcontrib><creatorcontrib>Bettinger, Jill C.</creatorcontrib><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</description><subject>Alcohol</subject><subject>Alcoholic Intoxication</subject><subject>Alcoholism</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Circuits</subject><subject>Dopamine</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Intoxication</subject><subject>Kinases</subject><subject>Learning</subject><subject>Nematodes</subject><subject>Neuropeptides - metabolism</subject><subject>Olfactory discrimination learning</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Recall</subject><subject>State-dependent learning</subject><subject>Tyrosine</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcuLFDEQh4Mo7rh69qQEvHiZ3bw66VyEZfAFC170HKqT6pkMPUmbdAvz39vjrOPjFKj66iNVP0JecnbDmZG3Y4J6IwRnSgvO7SOy4szytVaWPSYrxoRZt0qoK_Ks1j1jzDYte0qupJZKikavyP6OJpxLHnGcYkBa4zbBQH1OPZZKcdpBygOtE0xIA46YAiZ_pGEuMW1pHnrwUy5HOiCUdCrFRDeAKZcddCFOcZEMuIVUn5MnPQwVXzy81-Tbh_dfN5_W918-ft7c3a-9UnJaN7z1QZleCmiazjKvQi98ZyyAajUwJTxCqzV2IEJjGRdaG6sthKY1vAN5Td6dvePcHTB4TFOBwY0lHqAcXYbo_u2kuHPb_MNZbZSQZhG8fRCU_H3GOrlDrB6HARLmuTphpOJaN0Yu6Jv_0H2ey3LBX5ThWizGhbo9U77kWgv2l89w5k45ulOO7k-Oy8Trv3e48L-DW4BXZ2Bfl_Nf-sIIZmUr5U9OCKVz</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Lindsay, Jonathan H.</creator><creator>Mathies, Laura D.</creator><creator>Davies, Andrew G.</creator><creator>Bettinger, Jill C.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2976-2653</orcidid><orcidid>https://orcid.org/0000-0002-2749-6531</orcidid><orcidid>https://orcid.org/0000-0002-3173-1127</orcidid></search><sort><creationdate>20221115</creationdate><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><author>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohol</topic><topic>Alcoholic Intoxication</topic><topic>Alcoholism</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Circuits</topic><topic>Dopamine</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Intoxication</topic><topic>Kinases</topic><topic>Learning</topic><topic>Nematodes</topic><topic>Neuropeptides - metabolism</topic><topic>Olfactory discrimination learning</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Recall</topic><topic>State-dependent learning</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, Jonathan H.</creatorcontrib><creatorcontrib>Mathies, Laura D.</creatorcontrib><creatorcontrib>Davies, Andrew G.</creatorcontrib><creatorcontrib>Bettinger, Jill C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, Jonathan H.</au><au>Mathies, Laura D.</au><au>Davies, Andrew G.</au><au>Bettinger, Jill C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>119</volume><issue>46</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36343256</pmid><doi>10.1073/pnas.2210462119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2976-2653</orcidid><orcidid>https://orcid.org/0000-0002-2749-6531</orcidid><orcidid>https://orcid.org/0000-0002-3173-1127</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-10
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674237
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alcohol
Alcoholic Intoxication
Alcoholism
Animals
Biological Sciences
Caenorhabditis elegans
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Circuits
Dopamine
Ethanol
Ethanol - metabolism
Intoxication
Kinases
Learning
Nematodes
Neuropeptides - metabolism
Olfactory discrimination learning
Protein-tyrosine kinase receptors
Protein-Tyrosine Kinases - metabolism
Recall
State-dependent learning
Tyrosine
title A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neuropeptide%20signal%20confers%20ethanol%20state%20dependency%20during%20olfactory%20learning%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lindsay,%20Jonathan%20H.&rft.date=2022-11-15&rft.volume=119&rft.issue=46&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2210462119&rft_dat=%3Cjstor_pubme%3E27209383%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737162423&rft_id=info:pmid/36343256&rft_jstor_id=27209383&rfr_iscdi=true