A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans
Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly into...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (46), p.1-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 46 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Lindsay, Jonathan H. Mathies, Laura D. Davies, Andrew G. Bettinger, Jill C. |
description | Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access. |
doi_str_mv | 10.1073/pnas.2210462119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209383</jstor_id><sourcerecordid>27209383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</originalsourceid><addsrcrecordid>eNpdkcuLFDEQh4Mo7rh69qQEvHiZ3bw66VyEZfAFC170HKqT6pkMPUmbdAvz39vjrOPjFKj66iNVP0JecnbDmZG3Y4J6IwRnSgvO7SOy4szytVaWPSYrxoRZt0qoK_Ks1j1jzDYte0qupJZKikavyP6OJpxLHnGcYkBa4zbBQH1OPZZKcdpBygOtE0xIA46YAiZ_pGEuMW1pHnrwUy5HOiCUdCrFRDeAKZcddCFOcZEMuIVUn5MnPQwVXzy81-Tbh_dfN5_W918-ft7c3a-9UnJaN7z1QZleCmiazjKvQi98ZyyAajUwJTxCqzV2IEJjGRdaG6sthKY1vAN5Td6dvePcHTB4TFOBwY0lHqAcXYbo_u2kuHPb_MNZbZSQZhG8fRCU_H3GOrlDrB6HARLmuTphpOJaN0Yu6Jv_0H2ey3LBX5ThWizGhbo9U77kWgv2l89w5k45ulOO7k-Oy8Trv3e48L-DW4BXZ2Bfl_Nf-sIIZmUr5U9OCKVz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737162423</pqid></control><display><type>article</type><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</creator><creatorcontrib>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</creatorcontrib><description>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2210462119</identifier><identifier>PMID: 36343256</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alcohol ; Alcoholic Intoxication ; Alcoholism ; Animals ; Biological Sciences ; Caenorhabditis elegans ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Circuits ; Dopamine ; Ethanol ; Ethanol - metabolism ; Intoxication ; Kinases ; Learning ; Nematodes ; Neuropeptides - metabolism ; Olfactory discrimination learning ; Protein-tyrosine kinase receptors ; Protein-Tyrosine Kinases - metabolism ; Recall ; State-dependent learning ; Tyrosine</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</citedby><cites>FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</cites><orcidid>0000-0002-2976-2653 ; 0000-0002-2749-6531 ; 0000-0002-3173-1127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674237/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674237/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36343256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindsay, Jonathan H.</creatorcontrib><creatorcontrib>Mathies, Laura D.</creatorcontrib><creatorcontrib>Davies, Andrew G.</creatorcontrib><creatorcontrib>Bettinger, Jill C.</creatorcontrib><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</description><subject>Alcohol</subject><subject>Alcoholic Intoxication</subject><subject>Alcoholism</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Circuits</subject><subject>Dopamine</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Intoxication</subject><subject>Kinases</subject><subject>Learning</subject><subject>Nematodes</subject><subject>Neuropeptides - metabolism</subject><subject>Olfactory discrimination learning</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Recall</subject><subject>State-dependent learning</subject><subject>Tyrosine</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcuLFDEQh4Mo7rh69qQEvHiZ3bw66VyEZfAFC170HKqT6pkMPUmbdAvz39vjrOPjFKj66iNVP0JecnbDmZG3Y4J6IwRnSgvO7SOy4szytVaWPSYrxoRZt0qoK_Ks1j1jzDYte0qupJZKikavyP6OJpxLHnGcYkBa4zbBQH1OPZZKcdpBygOtE0xIA46YAiZ_pGEuMW1pHnrwUy5HOiCUdCrFRDeAKZcddCFOcZEMuIVUn5MnPQwVXzy81-Tbh_dfN5_W918-ft7c3a-9UnJaN7z1QZleCmiazjKvQi98ZyyAajUwJTxCqzV2IEJjGRdaG6sthKY1vAN5Td6dvePcHTB4TFOBwY0lHqAcXYbo_u2kuHPb_MNZbZSQZhG8fRCU_H3GOrlDrB6HARLmuTphpOJaN0Yu6Jv_0H2ey3LBX5ThWizGhbo9U77kWgv2l89w5k45ulOO7k-Oy8Trv3e48L-DW4BXZ2Bfl_Nf-sIIZmUr5U9OCKVz</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Lindsay, Jonathan H.</creator><creator>Mathies, Laura D.</creator><creator>Davies, Andrew G.</creator><creator>Bettinger, Jill C.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2976-2653</orcidid><orcidid>https://orcid.org/0000-0002-2749-6531</orcidid><orcidid>https://orcid.org/0000-0002-3173-1127</orcidid></search><sort><creationdate>20221115</creationdate><title>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</title><author>Lindsay, Jonathan H. ; Mathies, Laura D. ; Davies, Andrew G. ; Bettinger, Jill C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-518cd47f32a55b90c4df2cb79aa486a042cea866eba2d59012667969ad5871ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohol</topic><topic>Alcoholic Intoxication</topic><topic>Alcoholism</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Circuits</topic><topic>Dopamine</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Intoxication</topic><topic>Kinases</topic><topic>Learning</topic><topic>Nematodes</topic><topic>Neuropeptides - metabolism</topic><topic>Olfactory discrimination learning</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Recall</topic><topic>State-dependent learning</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, Jonathan H.</creatorcontrib><creatorcontrib>Mathies, Laura D.</creatorcontrib><creatorcontrib>Davies, Andrew G.</creatorcontrib><creatorcontrib>Bettinger, Jill C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, Jonathan H.</au><au>Mathies, Laura D.</au><au>Davies, Andrew G.</au><au>Bettinger, Jill C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>119</volume><issue>46</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Alcohol intoxication can impact learning and this may contribute to the development of problematic alcohol use. In alcohol (ethanol)-induced state-dependent learning (SDL), information learned while an animal is intoxicated is recalled more effectively when the subject is tested while similarly intoxicated than if tested while not intoxicated. When Caenorhabditis elegans undergoes olfactory learning (OL) while intoxicated, the learning becomes state dependent such that recall of OL is only apparent if the animals are tested while intoxicated.We found that two genes known to be required for signal integration, the secreted peptide HEN-1 and its receptor tyrosine kinase, SCD-2, are required for SDL. Expression of hen-1 in the ASER neuron and scd-2 in the AIA neurons was sufficient for their functions in SDL. Optogenetic activation of ASER in the absence of ethanol during learning could confer ethanol state dependency, indicating that ASER activation is sufficient to signal ethanol intoxication to the OL circuit. To our surprise, ASER activation during testing did not substitute for ethanol intoxication, demonstrating that the effects of ethanol on learning and recall rely on distinct signals. Additionally, intoxication-state information could be added to already established OL, but state-dependent OL did not lose state information when the intoxication signal was removed. Finally, dopamine is required for state-dependent OL, and we found that the activation of ASER cannot bypass this requirement. Our findings provide a window into the modulation of learning by ethanol and suggest that ethanol acts to modify learning using mechanisms distinct from those used during memory access.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36343256</pmid><doi>10.1073/pnas.2210462119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2976-2653</orcidid><orcidid>https://orcid.org/0000-0002-2749-6531</orcidid><orcidid>https://orcid.org/0000-0002-3173-1127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-10 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674237 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alcohol Alcoholic Intoxication Alcoholism Animals Biological Sciences Caenorhabditis elegans Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Circuits Dopamine Ethanol Ethanol - metabolism Intoxication Kinases Learning Nematodes Neuropeptides - metabolism Olfactory discrimination learning Protein-tyrosine kinase receptors Protein-Tyrosine Kinases - metabolism Recall State-dependent learning Tyrosine |
title | A neuropeptide signal confers ethanol state dependency during olfactory learning in Caenorhabditis elegans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neuropeptide%20signal%20confers%20ethanol%20state%20dependency%20during%20olfactory%20learning%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lindsay,%20Jonathan%20H.&rft.date=2022-11-15&rft.volume=119&rft.issue=46&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2210462119&rft_dat=%3Cjstor_pubme%3E27209383%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737162423&rft_id=info:pmid/36343256&rft_jstor_id=27209383&rfr_iscdi=true |