Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP
Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding pro...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (46), p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 46 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Gibson, Jacob A. Gebhardt, Michael J. Santos, Renato E. R. S. Dove, Simon L. Watnick, Paula I. |
description | Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis.We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane. |
doi_str_mv | 10.1073/pnas.2210115119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209379</jstor_id><sourcerecordid>27209379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2c665c5fe7698d3f422cacf6d50d19a55167075c37bc2cdf402ab27c9b21548c3</originalsourceid><addsrcrecordid>eNpdkUlvFDEQhS0EIpPAmRPIEpdcOimXt_EFKRpWEQFiu1putzvxqMce7G6k_Ht6MmFYTiVVffX0nh4hTxicMdD8fJtcPUNkwJhkzNwjCwaGNUoYuE8WAKibpUBxRI5rXQOAkUt4SI644oKjwgV5_yX8mEIdixtjTjT31NFucgPtp-RvVy8_XDRtTF1MV3Rb8hhiou0N_R7bEjP113kIxQW6-vzpEXnQu6GGx3fzhHx7_err6m1z-fHNu9XFZeOF4GODXinpZR-0MsuO9wLRO9-rTkLHjJOSKQ1aeq5bj77rBaBrUXvTIpNi6fkJebHX3U7tJnQ-pNn-YLclbly5sdlF--8lxWt7lX9ao7RAhrPA6Z1Aybfp7SZWH4bBpZCnalFzwdTsAmb0-X_oOk8lzfF2lGaKA6qZOt9TvuRaS-gPZhjYXVF2V5T9U9T88ezvDAf-dzMz8HQPrOuYy-GOGsFwbfgvKcaYCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737163026</pqid></control><display><type>article</type><title>Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gibson, Jacob A. ; Gebhardt, Michael J. ; Santos, Renato E. R. S. ; Dove, Simon L. ; Watnick, Paula I.</creator><creatorcontrib>Gibson, Jacob A. ; Gebhardt, Michael J. ; Santos, Renato E. R. S. ; Dove, Simon L. ; Watnick, Paula I.</creatorcontrib><description>Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis.We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2210115119</identifier><identifier>PMID: 36343262</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding sites ; Biofilms ; Biological Sciences ; Cell membranes ; Chemotaxis ; Cyclic AMP ; Cyclic AMP receptor protein ; Cyclic AMP Receptor Protein - genetics ; Cyclic AMP Receptor Protein - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA-binding protein ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Gene regulation ; Growth conditions ; Nutrients ; Peptidase ; Peptidases ; Post-translation ; Proteins ; Transcription factors ; Transcription Factors - metabolism ; Transcriptomes ; Vibrio cholerae - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-11</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 15, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2c665c5fe7698d3f422cacf6d50d19a55167075c37bc2cdf402ab27c9b21548c3</citedby><cites>FETCH-LOGICAL-c443t-2c665c5fe7698d3f422cacf6d50d19a55167075c37bc2cdf402ab27c9b21548c3</cites><orcidid>0000-0002-7493-3722 ; 0000-0002-9173-8662 ; 0000-0002-3758-608X ; 0000-0002-1213-8408 ; 0000-0002-8702-4202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674212/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674212/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36343262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gibson, Jacob A.</creatorcontrib><creatorcontrib>Gebhardt, Michael J.</creatorcontrib><creatorcontrib>Santos, Renato E. R. S.</creatorcontrib><creatorcontrib>Dove, Simon L.</creatorcontrib><creatorcontrib>Watnick, Paula I.</creatorcontrib><title>Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis.We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Biofilms</subject><subject>Biological Sciences</subject><subject>Cell membranes</subject><subject>Chemotaxis</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP receptor protein</subject><subject>Cyclic AMP Receptor Protein - genetics</subject><subject>Cyclic AMP Receptor Protein - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene regulation</subject><subject>Growth conditions</subject><subject>Nutrients</subject><subject>Peptidase</subject><subject>Peptidases</subject><subject>Post-translation</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptomes</subject><subject>Vibrio cholerae - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUlvFDEQhS0EIpPAmRPIEpdcOimXt_EFKRpWEQFiu1putzvxqMce7G6k_Ht6MmFYTiVVffX0nh4hTxicMdD8fJtcPUNkwJhkzNwjCwaGNUoYuE8WAKibpUBxRI5rXQOAkUt4SI644oKjwgV5_yX8mEIdixtjTjT31NFucgPtp-RvVy8_XDRtTF1MV3Rb8hhiou0N_R7bEjP113kIxQW6-vzpEXnQu6GGx3fzhHx7_err6m1z-fHNu9XFZeOF4GODXinpZR-0MsuO9wLRO9-rTkLHjJOSKQ1aeq5bj77rBaBrUXvTIpNi6fkJebHX3U7tJnQ-pNn-YLclbly5sdlF--8lxWt7lX9ao7RAhrPA6Z1Aybfp7SZWH4bBpZCnalFzwdTsAmb0-X_oOk8lzfF2lGaKA6qZOt9TvuRaS-gPZhjYXVF2V5T9U9T88ezvDAf-dzMz8HQPrOuYy-GOGsFwbfgvKcaYCA</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Gibson, Jacob A.</creator><creator>Gebhardt, Michael J.</creator><creator>Santos, Renato E. R. S.</creator><creator>Dove, Simon L.</creator><creator>Watnick, Paula I.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7493-3722</orcidid><orcidid>https://orcid.org/0000-0002-9173-8662</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0002-1213-8408</orcidid><orcidid>https://orcid.org/0000-0002-8702-4202</orcidid></search><sort><creationdate>20221115</creationdate><title>Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP</title><author>Gibson, Jacob A. ; Gebhardt, Michael J. ; Santos, Renato E. R. S. ; Dove, Simon L. ; Watnick, Paula I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2c665c5fe7698d3f422cacf6d50d19a55167075c37bc2cdf402ab27c9b21548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Biofilms</topic><topic>Biological Sciences</topic><topic>Cell membranes</topic><topic>Chemotaxis</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP receptor protein</topic><topic>Cyclic AMP Receptor Protein - genetics</topic><topic>Cyclic AMP Receptor Protein - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene regulation</topic><topic>Growth conditions</topic><topic>Nutrients</topic><topic>Peptidase</topic><topic>Peptidases</topic><topic>Post-translation</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptomes</topic><topic>Vibrio cholerae - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibson, Jacob A.</creatorcontrib><creatorcontrib>Gebhardt, Michael J.</creatorcontrib><creatorcontrib>Santos, Renato E. R. S.</creatorcontrib><creatorcontrib>Dove, Simon L.</creatorcontrib><creatorcontrib>Watnick, Paula I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibson, Jacob A.</au><au>Gebhardt, Michael J.</au><au>Santos, Renato E. R. S.</au><au>Dove, Simon L.</au><au>Watnick, Paula I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>119</volume><issue>46</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis.We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36343262</pmid><doi>10.1073/pnas.2210115119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7493-3722</orcidid><orcidid>https://orcid.org/0000-0002-9173-8662</orcidid><orcidid>https://orcid.org/0000-0002-3758-608X</orcidid><orcidid>https://orcid.org/0000-0002-1213-8408</orcidid><orcidid>https://orcid.org/0000-0002-8702-4202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (46), p.1-11 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674212 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding sites Biofilms Biological Sciences Cell membranes Chemotaxis Cyclic AMP Cyclic AMP receptor protein Cyclic AMP Receptor Protein - genetics Cyclic AMP Receptor Protein - metabolism Deoxyribonucleic acid DNA DNA - metabolism DNA-binding protein DNA-Binding Proteins - metabolism Gene Expression Regulation, Bacterial Gene regulation Growth conditions Nutrients Peptidase Peptidases Post-translation Proteins Transcription factors Transcription Factors - metabolism Transcriptomes Vibrio cholerae - genetics |
title | Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequestration%20of%20a%20dual%20function%20DNA-binding%20protein%20by%20Vibrio%20cholerae%20CRP&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gibson,%20Jacob%20A.&rft.date=2022-11-15&rft.volume=119&rft.issue=46&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2210115119&rft_dat=%3Cjstor_pubme%3E27209379%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737163026&rft_id=info:pmid/36343262&rft_jstor_id=27209379&rfr_iscdi=true |