Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics

Background and Objectives We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. Methods Septin‐IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of neurology 2022-12, Vol.92 (6), p.1090-1101
Hauptverfasser: Hinson, Shannon R., Honorat, Josephe A., Grund, Ethan M., Clarkson, Benjamin D., Miske, Ramona, Scharf, Madeleine, Zivelonghi, Cecilia, Al‐Lozi, Muhammad Taher, Bucelli, Robert C., Budhram, Adrian, Cho, Tracey, Choi, Ellie, Grell, Jacquelyn, Lopez‐Chiriboga, Alfonso Sebastian, Levin, Marc, Merati, Melody, Montalvo, Mayra, Pittock, Sean J., Wilson, Michael R., Howe, Charles L., McKeon, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1101
container_issue 6
container_start_page 1090
container_title Annals of neurology
container_volume 92
creator Hinson, Shannon R.
Honorat, Josephe A.
Grund, Ethan M.
Clarkson, Benjamin D.
Miske, Ramona
Scharf, Madeleine
Zivelonghi, Cecilia
Al‐Lozi, Muhammad Taher
Bucelli, Robert C.
Budhram, Adrian
Cho, Tracey
Choi, Ellie
Grell, Jacquelyn
Lopez‐Chiriboga, Alfonso Sebastian
Levin, Marc
Merati, Melody
Montalvo, Mayra
Pittock, Sean J.
Wilson, Michael R.
Howe, Charles L.
McKeon, Andrew
description Background and Objectives We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. Methods Septin‐IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. Results Septin‐IgGs were identified in 23 patients. All 8 patients with septin‐5‐IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co‐existing septin‐7‐IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin‐7 autoimmunity, without septin‐5‐IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre‐ and post‐synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. Interpretation Septin‐IgGs are predictive of distinct treatment‐responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin‐specific pathophysiology. ANN NEUROL 2022;92:1090–1101
doi_str_mv 10.1002/ana.26482
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9672904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736590479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4432-5f51e109704a073ff85e6f06e86068296fe0e79494983a6dfdb6f0f4abe2f8323</originalsourceid><addsrcrecordid>eNp1kd9qFDEUh0Ox2LV60ReQAW8UnPbk70y8EJZF20KpQpVehuzsyW7K7GRNZpS98xH6jH0SU6cuVZAQcsj5-DiHHyFHFI4pADuxnT1mStRsj0yo5LSsmdBPyAS4EqWkXByQZyndAIBWFJ6SA65A8pqxCbm-wk3vu7uft7Kw3aLIRZXv-fI0vSsucYihDUvfvC2ucFfec59tvwqb1Tb58beYrWy0TY_Rp9436TnZd7ZN-OLhPSRfP374MjsrLz6dns-mF2UjBGeldJIiBV2BsFBx52qJyoHCWoGqmVYOASst8qm5VQu3mOe2E3aOzNWc8UPyfvRuhvkaFw12fbSt2US_tnFrgvXm707nV2YZvhutKqZBZMHrB0EM3wZMvVn71GDb2g7DkAyr8nRcaqEy-uof9CYMscvrZYormXWVztSbkWpiSCmi2w1DwdzHZXJc5ndcmX35ePod-SefDJyMwA_f4vb_JjO9nI7KX_QCoPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736590479</pqid></control><display><type>article</type><title>Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hinson, Shannon R. ; Honorat, Josephe A. ; Grund, Ethan M. ; Clarkson, Benjamin D. ; Miske, Ramona ; Scharf, Madeleine ; Zivelonghi, Cecilia ; Al‐Lozi, Muhammad Taher ; Bucelli, Robert C. ; Budhram, Adrian ; Cho, Tracey ; Choi, Ellie ; Grell, Jacquelyn ; Lopez‐Chiriboga, Alfonso Sebastian ; Levin, Marc ; Merati, Melody ; Montalvo, Mayra ; Pittock, Sean J. ; Wilson, Michael R. ; Howe, Charles L. ; McKeon, Andrew</creator><creatorcontrib>Hinson, Shannon R. ; Honorat, Josephe A. ; Grund, Ethan M. ; Clarkson, Benjamin D. ; Miske, Ramona ; Scharf, Madeleine ; Zivelonghi, Cecilia ; Al‐Lozi, Muhammad Taher ; Bucelli, Robert C. ; Budhram, Adrian ; Cho, Tracey ; Choi, Ellie ; Grell, Jacquelyn ; Lopez‐Chiriboga, Alfonso Sebastian ; Levin, Marc ; Merati, Melody ; Montalvo, Mayra ; Pittock, Sean J. ; Wilson, Michael R. ; Howe, Charles L. ; McKeon, Andrew</creatorcontrib><description>Background and Objectives We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. Methods Septin‐IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. Results Septin‐IgGs were identified in 23 patients. All 8 patients with septin‐5‐IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co‐existing septin‐7‐IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin‐7 autoimmunity, without septin‐5‐IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre‐ and post‐synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. Interpretation Septin‐IgGs are predictive of distinct treatment‐responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin‐specific pathophysiology. ANN NEUROL 2022;92:1090–1101</description><identifier>ISSN: 0364-5134</identifier><identifier>EISSN: 1531-8249</identifier><identifier>DOI: 10.1002/ana.26482</identifier><identifier>PMID: 36053822</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animal tissues ; Animals ; Antigens ; Apathy ; Ataxia ; Autoimmunity ; Binding ; Brain Diseases ; Catatonia ; Central nervous system ; Central nervous system diseases ; Cerebellar ataxia ; Cerebellum ; Complement activation ; Crosslinking ; Disorders ; Emotional behavior ; Encephalopathy ; Epitopes ; Eye movements ; Firing pattern ; Glutamatergic transmission ; Hippocampus ; Immunofluorescence ; Immunoglobulin G ; Immunoglobulin G - metabolism ; Immunotherapy ; Internalization ; Mice ; Movement disorders ; Neurons ; Neurons - metabolism ; Patients ; Phenotypes ; Plasma membranes ; Rats ; Septin ; Septins - metabolism ; Signs and symptoms ; Spinal cord ; Spinal Cord Diseases ; γ-Aminobutyric acid</subject><ispartof>Annals of neurology, 2022-12, Vol.92 (6), p.1090-1101</ispartof><rights>2022 American Neurological Association.</rights><rights>2022 American Neurological Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4432-5f51e109704a073ff85e6f06e86068296fe0e79494983a6dfdb6f0f4abe2f8323</citedby><cites>FETCH-LOGICAL-c4432-5f51e109704a073ff85e6f06e86068296fe0e79494983a6dfdb6f0f4abe2f8323</cites><orcidid>0000-0003-2054-3486 ; 0000-0001-6856-8143 ; 0000-0002-8705-5084 ; 0000-0001-5653-5600 ; 0000-0002-6140-5584 ; 0000-0002-9166-9820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fana.26482$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fana.26482$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36053822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hinson, Shannon R.</creatorcontrib><creatorcontrib>Honorat, Josephe A.</creatorcontrib><creatorcontrib>Grund, Ethan M.</creatorcontrib><creatorcontrib>Clarkson, Benjamin D.</creatorcontrib><creatorcontrib>Miske, Ramona</creatorcontrib><creatorcontrib>Scharf, Madeleine</creatorcontrib><creatorcontrib>Zivelonghi, Cecilia</creatorcontrib><creatorcontrib>Al‐Lozi, Muhammad Taher</creatorcontrib><creatorcontrib>Bucelli, Robert C.</creatorcontrib><creatorcontrib>Budhram, Adrian</creatorcontrib><creatorcontrib>Cho, Tracey</creatorcontrib><creatorcontrib>Choi, Ellie</creatorcontrib><creatorcontrib>Grell, Jacquelyn</creatorcontrib><creatorcontrib>Lopez‐Chiriboga, Alfonso Sebastian</creatorcontrib><creatorcontrib>Levin, Marc</creatorcontrib><creatorcontrib>Merati, Melody</creatorcontrib><creatorcontrib>Montalvo, Mayra</creatorcontrib><creatorcontrib>Pittock, Sean J.</creatorcontrib><creatorcontrib>Wilson, Michael R.</creatorcontrib><creatorcontrib>Howe, Charles L.</creatorcontrib><creatorcontrib>McKeon, Andrew</creatorcontrib><title>Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics</title><title>Annals of neurology</title><addtitle>Ann Neurol</addtitle><description>Background and Objectives We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. Methods Septin‐IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. Results Septin‐IgGs were identified in 23 patients. All 8 patients with septin‐5‐IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co‐existing septin‐7‐IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin‐7 autoimmunity, without septin‐5‐IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre‐ and post‐synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. Interpretation Septin‐IgGs are predictive of distinct treatment‐responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin‐specific pathophysiology. ANN NEUROL 2022;92:1090–1101</description><subject>Animal tissues</subject><subject>Animals</subject><subject>Antigens</subject><subject>Apathy</subject><subject>Ataxia</subject><subject>Autoimmunity</subject><subject>Binding</subject><subject>Brain Diseases</subject><subject>Catatonia</subject><subject>Central nervous system</subject><subject>Central nervous system diseases</subject><subject>Cerebellar ataxia</subject><subject>Cerebellum</subject><subject>Complement activation</subject><subject>Crosslinking</subject><subject>Disorders</subject><subject>Emotional behavior</subject><subject>Encephalopathy</subject><subject>Epitopes</subject><subject>Eye movements</subject><subject>Firing pattern</subject><subject>Glutamatergic transmission</subject><subject>Hippocampus</subject><subject>Immunofluorescence</subject><subject>Immunoglobulin G</subject><subject>Immunoglobulin G - metabolism</subject><subject>Immunotherapy</subject><subject>Internalization</subject><subject>Mice</subject><subject>Movement disorders</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Plasma membranes</subject><subject>Rats</subject><subject>Septin</subject><subject>Septins - metabolism</subject><subject>Signs and symptoms</subject><subject>Spinal cord</subject><subject>Spinal Cord Diseases</subject><subject>γ-Aminobutyric acid</subject><issn>0364-5134</issn><issn>1531-8249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd9qFDEUh0Ox2LV60ReQAW8UnPbk70y8EJZF20KpQpVehuzsyW7K7GRNZpS98xH6jH0SU6cuVZAQcsj5-DiHHyFHFI4pADuxnT1mStRsj0yo5LSsmdBPyAS4EqWkXByQZyndAIBWFJ6SA65A8pqxCbm-wk3vu7uft7Kw3aLIRZXv-fI0vSsucYihDUvfvC2ucFfec59tvwqb1Tb58beYrWy0TY_Rp9436TnZd7ZN-OLhPSRfP374MjsrLz6dns-mF2UjBGeldJIiBV2BsFBx52qJyoHCWoGqmVYOASst8qm5VQu3mOe2E3aOzNWc8UPyfvRuhvkaFw12fbSt2US_tnFrgvXm707nV2YZvhutKqZBZMHrB0EM3wZMvVn71GDb2g7DkAyr8nRcaqEy-uof9CYMscvrZYormXWVztSbkWpiSCmi2w1DwdzHZXJc5ndcmX35ePod-SefDJyMwA_f4vb_JjO9nI7KX_QCoPg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Hinson, Shannon R.</creator><creator>Honorat, Josephe A.</creator><creator>Grund, Ethan M.</creator><creator>Clarkson, Benjamin D.</creator><creator>Miske, Ramona</creator><creator>Scharf, Madeleine</creator><creator>Zivelonghi, Cecilia</creator><creator>Al‐Lozi, Muhammad Taher</creator><creator>Bucelli, Robert C.</creator><creator>Budhram, Adrian</creator><creator>Cho, Tracey</creator><creator>Choi, Ellie</creator><creator>Grell, Jacquelyn</creator><creator>Lopez‐Chiriboga, Alfonso Sebastian</creator><creator>Levin, Marc</creator><creator>Merati, Melody</creator><creator>Montalvo, Mayra</creator><creator>Pittock, Sean J.</creator><creator>Wilson, Michael R.</creator><creator>Howe, Charles L.</creator><creator>McKeon, Andrew</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2054-3486</orcidid><orcidid>https://orcid.org/0000-0001-6856-8143</orcidid><orcidid>https://orcid.org/0000-0002-8705-5084</orcidid><orcidid>https://orcid.org/0000-0001-5653-5600</orcidid><orcidid>https://orcid.org/0000-0002-6140-5584</orcidid><orcidid>https://orcid.org/0000-0002-9166-9820</orcidid></search><sort><creationdate>202212</creationdate><title>Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics</title><author>Hinson, Shannon R. ; Honorat, Josephe A. ; Grund, Ethan M. ; Clarkson, Benjamin D. ; Miske, Ramona ; Scharf, Madeleine ; Zivelonghi, Cecilia ; Al‐Lozi, Muhammad Taher ; Bucelli, Robert C. ; Budhram, Adrian ; Cho, Tracey ; Choi, Ellie ; Grell, Jacquelyn ; Lopez‐Chiriboga, Alfonso Sebastian ; Levin, Marc ; Merati, Melody ; Montalvo, Mayra ; Pittock, Sean J. ; Wilson, Michael R. ; Howe, Charles L. ; McKeon, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4432-5f51e109704a073ff85e6f06e86068296fe0e79494983a6dfdb6f0f4abe2f8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal tissues</topic><topic>Animals</topic><topic>Antigens</topic><topic>Apathy</topic><topic>Ataxia</topic><topic>Autoimmunity</topic><topic>Binding</topic><topic>Brain Diseases</topic><topic>Catatonia</topic><topic>Central nervous system</topic><topic>Central nervous system diseases</topic><topic>Cerebellar ataxia</topic><topic>Cerebellum</topic><topic>Complement activation</topic><topic>Crosslinking</topic><topic>Disorders</topic><topic>Emotional behavior</topic><topic>Encephalopathy</topic><topic>Epitopes</topic><topic>Eye movements</topic><topic>Firing pattern</topic><topic>Glutamatergic transmission</topic><topic>Hippocampus</topic><topic>Immunofluorescence</topic><topic>Immunoglobulin G</topic><topic>Immunoglobulin G - metabolism</topic><topic>Immunotherapy</topic><topic>Internalization</topic><topic>Mice</topic><topic>Movement disorders</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Plasma membranes</topic><topic>Rats</topic><topic>Septin</topic><topic>Septins - metabolism</topic><topic>Signs and symptoms</topic><topic>Spinal cord</topic><topic>Spinal Cord Diseases</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hinson, Shannon R.</creatorcontrib><creatorcontrib>Honorat, Josephe A.</creatorcontrib><creatorcontrib>Grund, Ethan M.</creatorcontrib><creatorcontrib>Clarkson, Benjamin D.</creatorcontrib><creatorcontrib>Miske, Ramona</creatorcontrib><creatorcontrib>Scharf, Madeleine</creatorcontrib><creatorcontrib>Zivelonghi, Cecilia</creatorcontrib><creatorcontrib>Al‐Lozi, Muhammad Taher</creatorcontrib><creatorcontrib>Bucelli, Robert C.</creatorcontrib><creatorcontrib>Budhram, Adrian</creatorcontrib><creatorcontrib>Cho, Tracey</creatorcontrib><creatorcontrib>Choi, Ellie</creatorcontrib><creatorcontrib>Grell, Jacquelyn</creatorcontrib><creatorcontrib>Lopez‐Chiriboga, Alfonso Sebastian</creatorcontrib><creatorcontrib>Levin, Marc</creatorcontrib><creatorcontrib>Merati, Melody</creatorcontrib><creatorcontrib>Montalvo, Mayra</creatorcontrib><creatorcontrib>Pittock, Sean J.</creatorcontrib><creatorcontrib>Wilson, Michael R.</creatorcontrib><creatorcontrib>Howe, Charles L.</creatorcontrib><creatorcontrib>McKeon, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hinson, Shannon R.</au><au>Honorat, Josephe A.</au><au>Grund, Ethan M.</au><au>Clarkson, Benjamin D.</au><au>Miske, Ramona</au><au>Scharf, Madeleine</au><au>Zivelonghi, Cecilia</au><au>Al‐Lozi, Muhammad Taher</au><au>Bucelli, Robert C.</au><au>Budhram, Adrian</au><au>Cho, Tracey</au><au>Choi, Ellie</au><au>Grell, Jacquelyn</au><au>Lopez‐Chiriboga, Alfonso Sebastian</au><au>Levin, Marc</au><au>Merati, Melody</au><au>Montalvo, Mayra</au><au>Pittock, Sean J.</au><au>Wilson, Michael R.</au><au>Howe, Charles L.</au><au>McKeon, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics</atitle><jtitle>Annals of neurology</jtitle><addtitle>Ann Neurol</addtitle><date>2022-12</date><risdate>2022</risdate><volume>92</volume><issue>6</issue><spage>1090</spage><epage>1101</epage><pages>1090-1101</pages><issn>0364-5134</issn><eissn>1531-8249</eissn><abstract>Background and Objectives We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. Methods Septin‐IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. Results Septin‐IgGs were identified in 23 patients. All 8 patients with septin‐5‐IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co‐existing septin‐7‐IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin‐7 autoimmunity, without septin‐5‐IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre‐ and post‐synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. Interpretation Septin‐IgGs are predictive of distinct treatment‐responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin‐specific pathophysiology. ANN NEUROL 2022;92:1090–1101</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36053822</pmid><doi>10.1002/ana.26482</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2054-3486</orcidid><orcidid>https://orcid.org/0000-0001-6856-8143</orcidid><orcidid>https://orcid.org/0000-0002-8705-5084</orcidid><orcidid>https://orcid.org/0000-0001-5653-5600</orcidid><orcidid>https://orcid.org/0000-0002-6140-5584</orcidid><orcidid>https://orcid.org/0000-0002-9166-9820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-5134
ispartof Annals of neurology, 2022-12, Vol.92 (6), p.1090-1101
issn 0364-5134
1531-8249
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9672904
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal tissues
Animals
Antigens
Apathy
Ataxia
Autoimmunity
Binding
Brain Diseases
Catatonia
Central nervous system
Central nervous system diseases
Cerebellar ataxia
Cerebellum
Complement activation
Crosslinking
Disorders
Emotional behavior
Encephalopathy
Epitopes
Eye movements
Firing pattern
Glutamatergic transmission
Hippocampus
Immunofluorescence
Immunoglobulin G
Immunoglobulin G - metabolism
Immunotherapy
Internalization
Mice
Movement disorders
Neurons
Neurons - metabolism
Patients
Phenotypes
Plasma membranes
Rats
Septin
Septins - metabolism
Signs and symptoms
Spinal cord
Spinal Cord Diseases
γ-Aminobutyric acid
title Septin‐5 and ‐7‐IgGs: Neurologic, Serologic, and Pathophysiologic Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Septin%E2%80%905%20and%20%E2%80%907%E2%80%90IgGs:%20Neurologic,%20Serologic,%20and%20Pathophysiologic%20Characteristics&rft.jtitle=Annals%20of%20neurology&rft.au=Hinson,%20Shannon%20R.&rft.date=2022-12&rft.volume=92&rft.issue=6&rft.spage=1090&rft.epage=1101&rft.pages=1090-1101&rft.issn=0364-5134&rft.eissn=1531-8249&rft_id=info:doi/10.1002/ana.26482&rft_dat=%3Cproquest_pubme%3E2736590479%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736590479&rft_id=info:pmid/36053822&rfr_iscdi=true