Plant-associated fungi support bacterial resilience following water limitation

Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H 2 18 O quantitative stabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2022-12, Vol.16 (12), p.2752-2762
Hauptverfasser: Hestrin, Rachel, Kan, Megan, Lafler, Marissa, Wollard, Jessica, Kimbrel, Jeffrey A., Ray, Prasun, Blazewicz, Steven J., Stuart, Rhona, Craven, Kelly, Firestone, Mary, Nuccio, Erin E., Pett-Ridge, Jennifer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2762
container_issue 12
container_start_page 2752
container_title The ISME Journal
container_volume 16
creator Hestrin, Rachel
Kan, Megan
Lafler, Marissa
Wollard, Jessica
Kimbrel, Jeffrey A.
Ray, Prasun
Blazewicz, Steven J.
Stuart, Rhona
Craven, Kelly
Firestone, Mary
Nuccio, Erin E.
Pett-Ridge, Jennifer
description Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H 2 18 O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages ( Rhizophagus irregularis and Serendipita bescii ) grown with the bioenergy model grass Panicum hallii . In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii -inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H 2 18 O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal–bacterial synergies may support bacterial resilience to moisture limitation.
doi_str_mv 10.1038/s41396-022-01308-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9666503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736504611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-e1afbd3f685b17c0a9985cc76a9b34d545bfec89ef760e6f2a3fceb3bcdfe2273</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhomxsbX6B1yYiW7cTOVj-JiNSdP4lTTqQteEYQ63NFy4AmPjv5fr1GvrwhUk5znPgfMi9IzgM4KZel0GwkbRY0p7TBhWvXiATojkpJdM4oeHu6DH6HEp1xhzKYR8hI6ZwIpzIk7Qpy_BxNqbUpL1psLcuSVufFeW3S7l2k3GVsjehC5D8cFDtNC5FEK68XHT3bSW3AW_9dVUn-ITdORMKPD09jxF3969_Xrxob_8_P7jxfllbzkmtQdi3DQzJxSfiLTYjKPi1kphxokNMx_45MCqEZwUGISjhjkLE5vs7IBSyU7Rm9W7W6YtzBZizSboXfZbk3_qZLy-X4n-Sm_SDz0KIThmTfBiFaRSvS7WV7BXNsUItmqilBgoadCr2yk5fV-gVL31xUJoK4O0FE0loWoYGRcNffkPep2WHNsOGsXayEGQvZCulM2plAzu8GKC9T5TvWaqW6b6d6Z6r35-96-Hlj8hNoCtQGmluIH8d_Z_tL8AoxavKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736504611</pqid></control><display><type>article</type><title>Plant-associated fungi support bacterial resilience following water limitation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hestrin, Rachel ; Kan, Megan ; Lafler, Marissa ; Wollard, Jessica ; Kimbrel, Jeffrey A. ; Ray, Prasun ; Blazewicz, Steven J. ; Stuart, Rhona ; Craven, Kelly ; Firestone, Mary ; Nuccio, Erin E. ; Pett-Ridge, Jennifer</creator><creatorcontrib>Hestrin, Rachel ; Kan, Megan ; Lafler, Marissa ; Wollard, Jessica ; Kimbrel, Jeffrey A. ; Ray, Prasun ; Blazewicz, Steven J. ; Stuart, Rhona ; Craven, Kelly ; Firestone, Mary ; Nuccio, Erin E. ; Pett-Ridge, Jennifer</creatorcontrib><description>Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H 2 18 O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages ( Rhizophagus irregularis and Serendipita bescii ) grown with the bioenergy model grass Panicum hallii . In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii -inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H 2 18 O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal–bacterial synergies may support bacterial resilience to moisture limitation.</description><identifier>ISSN: 1751-7362</identifier><identifier>ISSN: 1751-7370</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/s41396-022-01308-6</identifier><identifier>PMID: 36085516</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 45/77 ; 631/1647/514/1948 ; 631/326/193/2539 ; 631/326/2565/855 ; 704/158/2165 ; 704/158/2466 ; Bacteria ; Biogeochemistry ; Biological activity ; Biomedical and Life Sciences ; Community structure ; Drought ; Ecology ; Evolutionary Biology ; Fungi ; Life Sciences ; Microbial activity ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Moisture effects ; Nutrient cycles ; Plant growth ; Resilience ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Soil - chemistry ; Soil Microbiology ; Soil microorganisms ; Soil water ; Soils ; Stable isotopes ; Water - analysis</subject><ispartof>The ISME Journal, 2022-12, Vol.16 (12), p.2752-2762</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-e1afbd3f685b17c0a9985cc76a9b34d545bfec89ef760e6f2a3fceb3bcdfe2273</citedby><cites>FETCH-LOGICAL-c501t-e1afbd3f685b17c0a9985cc76a9b34d545bfec89ef760e6f2a3fceb3bcdfe2273</cites><orcidid>0000-0003-1315-8870 ; 0000-0001-5916-9693 ; 0000-0002-4439-2398 ; 0000-0002-9329-2609 ; 0000-0001-7517-1750 ; 0000-0001-7213-9392 ; 0000-0003-0189-183X ; 0000-0002-0526-0130 ; 0000000172139392 ; 0000000293292609 ; 0000000205260130 ; 000000030189183X ; 0000000244392398 ; 0000000175171750 ; 0000000313158870 ; 0000000159169693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666503/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666503/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36085516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1886421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hestrin, Rachel</creatorcontrib><creatorcontrib>Kan, Megan</creatorcontrib><creatorcontrib>Lafler, Marissa</creatorcontrib><creatorcontrib>Wollard, Jessica</creatorcontrib><creatorcontrib>Kimbrel, Jeffrey A.</creatorcontrib><creatorcontrib>Ray, Prasun</creatorcontrib><creatorcontrib>Blazewicz, Steven J.</creatorcontrib><creatorcontrib>Stuart, Rhona</creatorcontrib><creatorcontrib>Craven, Kelly</creatorcontrib><creatorcontrib>Firestone, Mary</creatorcontrib><creatorcontrib>Nuccio, Erin E.</creatorcontrib><creatorcontrib>Pett-Ridge, Jennifer</creatorcontrib><title>Plant-associated fungi support bacterial resilience following water limitation</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H 2 18 O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages ( Rhizophagus irregularis and Serendipita bescii ) grown with the bioenergy model grass Panicum hallii . In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii -inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H 2 18 O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal–bacterial synergies may support bacterial resilience to moisture limitation.</description><subject>45</subject><subject>45/23</subject><subject>45/77</subject><subject>631/1647/514/1948</subject><subject>631/326/193/2539</subject><subject>631/326/2565/855</subject><subject>704/158/2165</subject><subject>704/158/2466</subject><subject>Bacteria</subject><subject>Biogeochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Community structure</subject><subject>Drought</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Moisture effects</subject><subject>Nutrient cycles</subject><subject>Plant growth</subject><subject>Resilience</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Soil - chemistry</subject><subject>Soil Microbiology</subject><subject>Soil microorganisms</subject><subject>Soil water</subject><subject>Soils</subject><subject>Stable isotopes</subject><subject>Water - analysis</subject><issn>1751-7362</issn><issn>1751-7370</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1vFSEUhomxsbX6B1yYiW7cTOVj-JiNSdP4lTTqQteEYQ63NFy4AmPjv5fr1GvrwhUk5znPgfMi9IzgM4KZel0GwkbRY0p7TBhWvXiATojkpJdM4oeHu6DH6HEp1xhzKYR8hI6ZwIpzIk7Qpy_BxNqbUpL1psLcuSVufFeW3S7l2k3GVsjehC5D8cFDtNC5FEK68XHT3bSW3AW_9dVUn-ITdORMKPD09jxF3969_Xrxob_8_P7jxfllbzkmtQdi3DQzJxSfiLTYjKPi1kphxokNMx_45MCqEZwUGISjhjkLE5vs7IBSyU7Rm9W7W6YtzBZizSboXfZbk3_qZLy-X4n-Sm_SDz0KIThmTfBiFaRSvS7WV7BXNsUItmqilBgoadCr2yk5fV-gVL31xUJoK4O0FE0loWoYGRcNffkPep2WHNsOGsXayEGQvZCulM2plAzu8GKC9T5TvWaqW6b6d6Z6r35-96-Hlj8hNoCtQGmluIH8d_Z_tL8AoxavKw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hestrin, Rachel</creator><creator>Kan, Megan</creator><creator>Lafler, Marissa</creator><creator>Wollard, Jessica</creator><creator>Kimbrel, Jeffrey A.</creator><creator>Ray, Prasun</creator><creator>Blazewicz, Steven J.</creator><creator>Stuart, Rhona</creator><creator>Craven, Kelly</creator><creator>Firestone, Mary</creator><creator>Nuccio, Erin E.</creator><creator>Pett-Ridge, Jennifer</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Oxford University Press</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1315-8870</orcidid><orcidid>https://orcid.org/0000-0001-5916-9693</orcidid><orcidid>https://orcid.org/0000-0002-4439-2398</orcidid><orcidid>https://orcid.org/0000-0002-9329-2609</orcidid><orcidid>https://orcid.org/0000-0001-7517-1750</orcidid><orcidid>https://orcid.org/0000-0001-7213-9392</orcidid><orcidid>https://orcid.org/0000-0003-0189-183X</orcidid><orcidid>https://orcid.org/0000-0002-0526-0130</orcidid><orcidid>https://orcid.org/0000000172139392</orcidid><orcidid>https://orcid.org/0000000293292609</orcidid><orcidid>https://orcid.org/0000000205260130</orcidid><orcidid>https://orcid.org/000000030189183X</orcidid><orcidid>https://orcid.org/0000000244392398</orcidid><orcidid>https://orcid.org/0000000175171750</orcidid><orcidid>https://orcid.org/0000000313158870</orcidid><orcidid>https://orcid.org/0000000159169693</orcidid></search><sort><creationdate>20221201</creationdate><title>Plant-associated fungi support bacterial resilience following water limitation</title><author>Hestrin, Rachel ; Kan, Megan ; Lafler, Marissa ; Wollard, Jessica ; Kimbrel, Jeffrey A. ; Ray, Prasun ; Blazewicz, Steven J. ; Stuart, Rhona ; Craven, Kelly ; Firestone, Mary ; Nuccio, Erin E. ; Pett-Ridge, Jennifer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-e1afbd3f685b17c0a9985cc76a9b34d545bfec89ef760e6f2a3fceb3bcdfe2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>45</topic><topic>45/23</topic><topic>45/77</topic><topic>631/1647/514/1948</topic><topic>631/326/193/2539</topic><topic>631/326/2565/855</topic><topic>704/158/2165</topic><topic>704/158/2466</topic><topic>Bacteria</topic><topic>Biogeochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Community structure</topic><topic>Drought</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Moisture effects</topic><topic>Nutrient cycles</topic><topic>Plant growth</topic><topic>Resilience</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Soil - chemistry</topic><topic>Soil Microbiology</topic><topic>Soil microorganisms</topic><topic>Soil water</topic><topic>Soils</topic><topic>Stable isotopes</topic><topic>Water - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hestrin, Rachel</creatorcontrib><creatorcontrib>Kan, Megan</creatorcontrib><creatorcontrib>Lafler, Marissa</creatorcontrib><creatorcontrib>Wollard, Jessica</creatorcontrib><creatorcontrib>Kimbrel, Jeffrey A.</creatorcontrib><creatorcontrib>Ray, Prasun</creatorcontrib><creatorcontrib>Blazewicz, Steven J.</creatorcontrib><creatorcontrib>Stuart, Rhona</creatorcontrib><creatorcontrib>Craven, Kelly</creatorcontrib><creatorcontrib>Firestone, Mary</creatorcontrib><creatorcontrib>Nuccio, Erin E.</creatorcontrib><creatorcontrib>Pett-Ridge, Jennifer</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hestrin, Rachel</au><au>Kan, Megan</au><au>Lafler, Marissa</au><au>Wollard, Jessica</au><au>Kimbrel, Jeffrey A.</au><au>Ray, Prasun</au><au>Blazewicz, Steven J.</au><au>Stuart, Rhona</au><au>Craven, Kelly</au><au>Firestone, Mary</au><au>Nuccio, Erin E.</au><au>Pett-Ridge, Jennifer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant-associated fungi support bacterial resilience following water limitation</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>12</issue><spage>2752</spage><epage>2762</epage><pages>2752-2762</pages><issn>1751-7362</issn><issn>1751-7370</issn><eissn>1751-7370</eissn><abstract>Drought disrupts soil microbial activity and many biogeochemical processes. Although plant-associated fungi can support plant performance and nutrient cycling during drought, their effects on nearby drought-exposed soil microbial communities are not well resolved. We used H 2 18 O quantitative stable isotope probing (qSIP) and 16S rRNA gene profiling to investigate bacterial community dynamics following water limitation in the hyphospheres of two distinct fungal lineages ( Rhizophagus irregularis and Serendipita bescii ) grown with the bioenergy model grass Panicum hallii . In uninoculated soil, a history of water limitation resulted in significantly lower bacterial growth potential and growth efficiency, as well as lower diversity in the actively growing bacterial community. In contrast, both fungal lineages had a protective effect on hyphosphere bacterial communities exposed to water limitation: bacterial growth potential, growth efficiency, and the diversity of the actively growing bacterial community were not suppressed by a history of water limitation in soils inoculated with either fungus. Despite their similar effects at the community level, the two fungal lineages did elicit different taxon-specific responses, and bacterial growth potential was greater in R. irregularis compared to S. bescii -inoculated soils. Several of the bacterial taxa that responded positively to fungal inocula belong to lineages that are considered drought susceptible. Overall, H 2 18 O qSIP highlighted treatment effects on bacterial community structure that were less pronounced using traditional 16S rRNA gene profiling. Together, these results indicate that fungal–bacterial synergies may support bacterial resilience to moisture limitation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36085516</pmid><doi>10.1038/s41396-022-01308-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1315-8870</orcidid><orcidid>https://orcid.org/0000-0001-5916-9693</orcidid><orcidid>https://orcid.org/0000-0002-4439-2398</orcidid><orcidid>https://orcid.org/0000-0002-9329-2609</orcidid><orcidid>https://orcid.org/0000-0001-7517-1750</orcidid><orcidid>https://orcid.org/0000-0001-7213-9392</orcidid><orcidid>https://orcid.org/0000-0003-0189-183X</orcidid><orcidid>https://orcid.org/0000-0002-0526-0130</orcidid><orcidid>https://orcid.org/0000000172139392</orcidid><orcidid>https://orcid.org/0000000293292609</orcidid><orcidid>https://orcid.org/0000000205260130</orcidid><orcidid>https://orcid.org/000000030189183X</orcidid><orcidid>https://orcid.org/0000000244392398</orcidid><orcidid>https://orcid.org/0000000175171750</orcidid><orcidid>https://orcid.org/0000000313158870</orcidid><orcidid>https://orcid.org/0000000159169693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2022-12, Vol.16 (12), p.2752-2762
issn 1751-7362
1751-7370
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9666503
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 45
45/23
45/77
631/1647/514/1948
631/326/193/2539
631/326/2565/855
704/158/2165
704/158/2466
Bacteria
Biogeochemistry
Biological activity
Biomedical and Life Sciences
Community structure
Drought
Ecology
Evolutionary Biology
Fungi
Life Sciences
Microbial activity
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Moisture effects
Nutrient cycles
Plant growth
Resilience
RNA, Ribosomal, 16S - genetics
rRNA 16S
Soil - chemistry
Soil Microbiology
Soil microorganisms
Soil water
Soils
Stable isotopes
Water - analysis
title Plant-associated fungi support bacterial resilience following water limitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant-associated%20fungi%20support%20bacterial%20resilience%20following%20water%20limitation&rft.jtitle=The%20ISME%20Journal&rft.au=Hestrin,%20Rachel&rft.date=2022-12-01&rft.volume=16&rft.issue=12&rft.spage=2752&rft.epage=2762&rft.pages=2752-2762&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/s41396-022-01308-6&rft_dat=%3Cproquest_pubme%3E2736504611%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736504611&rft_id=info:pmid/36085516&rfr_iscdi=true