Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor

The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (21), p.7426
Hauptverfasser: Afzal, Saba, Hussain, Humaira, Naz, Muhammad Yasin, Shukrullah, Shazia, Ahmad, Irshad, Irfan, Muhammad, Mursal, Salim Nasar Faraj, Legutko, Stanislaw, Kruszelnicka, Izabela, Ginter-Kramarczyk, Dobrochna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 7426
container_title Materials
container_volume 15
creator Afzal, Saba
Hussain, Humaira
Naz, Muhammad Yasin
Shukrullah, Shazia
Ahmad, Irshad
Irfan, Muhammad
Mursal, Salim Nasar Faraj
Legutko, Stanislaw
Kruszelnicka, Izabela
Ginter-Kramarczyk, Dobrochna
description The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.
doi_str_mv 10.3390/ma15217426
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9657977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734690458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cc0a7c4de448c445da317c3c367b77b9da3a1c49d98624c7afbf26a8a9213f883</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhiMEolXphV9giQtCCo0_EtsXJEhLF2mlIgoXLtas42xdHLvYzor8iv7lemnFR8eH8Xgev5pXU1UvcfOWUtmcTIBbgjkj3ZPqEEvZ1Vgy9vSf-0F1nNJ1U4JSLIh8Xh3QrpwGi8PqtocMbslWo9UyxLA1Hp3tgpuzDR6NMUxoRS5RH0H_sH6Lws7EUv367svj768pI-sRoH5x1g_RanDosqDO1GtYTDQDOrXGGZ1LD32AGG2ROLVJX0HcGvTZQZoAfTGgc4gvqmcjuGSOH_JR9e3j2dd-Va8vzj_179e1poLmWusGuGaDYUxoxtoBKOaaatrxDecbWWrAmslBio4wzWHcjKQDAZJgOgpBj6p397o382YygzY-R3DqJtoJ4qICWPV_x9srtQ07JbuWS86LwOsHgRh-ziZlNRVLxjnwJsxJEU5bwTEmpKCvHqHXYY6-2NtTrJMNa_cTvbmndAwpRTP-GQY3ar9q9XfV9A630pwD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734690458</pqid></control><display><type>article</type><title>Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Afzal, Saba ; Hussain, Humaira ; Naz, Muhammad Yasin ; Shukrullah, Shazia ; Ahmad, Irshad ; Irfan, Muhammad ; Mursal, Salim Nasar Faraj ; Legutko, Stanislaw ; Kruszelnicka, Izabela ; Ginter-Kramarczyk, Dobrochna</creator><creatorcontrib>Afzal, Saba ; Hussain, Humaira ; Naz, Muhammad Yasin ; Shukrullah, Shazia ; Ahmad, Irshad ; Irfan, Muhammad ; Mursal, Salim Nasar Faraj ; Legutko, Stanislaw ; Kruszelnicka, Izabela ; Ginter-Kramarczyk, Dobrochna</creatorcontrib><description>The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15217426</identifier><identifier>PMID: 36363018</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum oxide ; Argon ; Catalysts ; Catalytic activity ; Chemicals ; Decomposition ; Dielectric barrier discharge ; Dopants ; Energy ; Hydrogen ; Hydrogen evolution ; Hydrogen sulfide ; Methods ; Nanocomposites ; Nitrates ; Photocatalysis ; Plasma ; Spectrum analysis ; Thermal plasmas ; Zincblende</subject><ispartof>Materials, 2022-10, Vol.15 (21), p.7426</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cc0a7c4de448c445da317c3c367b77b9da3a1c49d98624c7afbf26a8a9213f883</citedby><cites>FETCH-LOGICAL-c383t-cc0a7c4de448c445da317c3c367b77b9da3a1c49d98624c7afbf26a8a9213f883</cites><orcidid>0000-0001-8973-5035 ; 0000-0003-4400-2553 ; 0000-0001-6588-4546 ; 0000-0003-4161-6875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Afzal, Saba</creatorcontrib><creatorcontrib>Hussain, Humaira</creatorcontrib><creatorcontrib>Naz, Muhammad Yasin</creatorcontrib><creatorcontrib>Shukrullah, Shazia</creatorcontrib><creatorcontrib>Ahmad, Irshad</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Mursal, Salim Nasar Faraj</creatorcontrib><creatorcontrib>Legutko, Stanislaw</creatorcontrib><creatorcontrib>Kruszelnicka, Izabela</creatorcontrib><creatorcontrib>Ginter-Kramarczyk, Dobrochna</creatorcontrib><title>Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor</title><title>Materials</title><description>The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.</description><subject>Aluminum oxide</subject><subject>Argon</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemicals</subject><subject>Decomposition</subject><subject>Dielectric barrier discharge</subject><subject>Dopants</subject><subject>Energy</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen sulfide</subject><subject>Methods</subject><subject>Nanocomposites</subject><subject>Nitrates</subject><subject>Photocatalysis</subject><subject>Plasma</subject><subject>Spectrum analysis</subject><subject>Thermal plasmas</subject><subject>Zincblende</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1v1DAQhiMEolXphV9giQtCCo0_EtsXJEhLF2mlIgoXLtas42xdHLvYzor8iv7lemnFR8eH8Xgev5pXU1UvcfOWUtmcTIBbgjkj3ZPqEEvZ1Vgy9vSf-0F1nNJ1U4JSLIh8Xh3QrpwGi8PqtocMbslWo9UyxLA1Hp3tgpuzDR6NMUxoRS5RH0H_sH6Lws7EUv367svj768pI-sRoH5x1g_RanDosqDO1GtYTDQDOrXGGZ1LD32AGG2ROLVJX0HcGvTZQZoAfTGgc4gvqmcjuGSOH_JR9e3j2dd-Va8vzj_179e1poLmWusGuGaDYUxoxtoBKOaaatrxDecbWWrAmslBio4wzWHcjKQDAZJgOgpBj6p397o382YygzY-R3DqJtoJ4qICWPV_x9srtQ07JbuWS86LwOsHgRh-ziZlNRVLxjnwJsxJEU5bwTEmpKCvHqHXYY6-2NtTrJMNa_cTvbmndAwpRTP-GQY3ar9q9XfV9A630pwD</recordid><startdate>20221023</startdate><enddate>20221023</enddate><creator>Afzal, Saba</creator><creator>Hussain, Humaira</creator><creator>Naz, Muhammad Yasin</creator><creator>Shukrullah, Shazia</creator><creator>Ahmad, Irshad</creator><creator>Irfan, Muhammad</creator><creator>Mursal, Salim Nasar Faraj</creator><creator>Legutko, Stanislaw</creator><creator>Kruszelnicka, Izabela</creator><creator>Ginter-Kramarczyk, Dobrochna</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8973-5035</orcidid><orcidid>https://orcid.org/0000-0003-4400-2553</orcidid><orcidid>https://orcid.org/0000-0001-6588-4546</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid></search><sort><creationdate>20221023</creationdate><title>Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor</title><author>Afzal, Saba ; Hussain, Humaira ; Naz, Muhammad Yasin ; Shukrullah, Shazia ; Ahmad, Irshad ; Irfan, Muhammad ; Mursal, Salim Nasar Faraj ; Legutko, Stanislaw ; Kruszelnicka, Izabela ; Ginter-Kramarczyk, Dobrochna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cc0a7c4de448c445da317c3c367b77b9da3a1c49d98624c7afbf26a8a9213f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Argon</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemicals</topic><topic>Decomposition</topic><topic>Dielectric barrier discharge</topic><topic>Dopants</topic><topic>Energy</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen sulfide</topic><topic>Methods</topic><topic>Nanocomposites</topic><topic>Nitrates</topic><topic>Photocatalysis</topic><topic>Plasma</topic><topic>Spectrum analysis</topic><topic>Thermal plasmas</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afzal, Saba</creatorcontrib><creatorcontrib>Hussain, Humaira</creatorcontrib><creatorcontrib>Naz, Muhammad Yasin</creatorcontrib><creatorcontrib>Shukrullah, Shazia</creatorcontrib><creatorcontrib>Ahmad, Irshad</creatorcontrib><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Mursal, Salim Nasar Faraj</creatorcontrib><creatorcontrib>Legutko, Stanislaw</creatorcontrib><creatorcontrib>Kruszelnicka, Izabela</creatorcontrib><creatorcontrib>Ginter-Kramarczyk, Dobrochna</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afzal, Saba</au><au>Hussain, Humaira</au><au>Naz, Muhammad Yasin</au><au>Shukrullah, Shazia</au><au>Ahmad, Irshad</au><au>Irfan, Muhammad</au><au>Mursal, Salim Nasar Faraj</au><au>Legutko, Stanislaw</au><au>Kruszelnicka, Izabela</au><au>Ginter-Kramarczyk, Dobrochna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor</atitle><jtitle>Materials</jtitle><date>2022-10-23</date><risdate>2022</risdate><volume>15</volume><issue>21</issue><spage>7426</spage><pages>7426-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The use of non-thermal plasma technology in producing green fuels is a much-appreciated environmentally friendly approach. In this study, an Al2O3-supported CrxZnS semiconductor catalyst was tested for hydrogen evolution from hydrogen sulfide (H2S) gas by using a single-layered dielectric barrier discharge (DBD) system. The Al2O3-supported CrxZnS catalyst (x = 0.20, 0.25, and 0.30) was produced by using a co-impregnation method and characterized for its structural and photocatalytic characteristics. The discharge column of the DBD system was filled with this catalyst and fed with hydrogen sulfide and argon gas. The DBD plasma was sustained with a fixed AC source of 10 kV where plasma produced species and UV radiations activated the catalyst to break H2S molecules under ambient conditions. The catalyst (hexagonal-cubic-sphalerite structure) showed an inverse relationship between the band gap and the dopant concentration. The hydrogen evolution decreased with an increase in dopant concentration in the nanocomposite. The Cr0.20ZnS catalyst showed excellent photocatalytic activity under the DBD exposure by delivering 100% conversion efficiency of H2S into hydrogen. The conversion decreased to 96% and 90% in case of Cr0.25ZnS and Cr0.30ZnS, respectively.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363018</pmid><doi>10.3390/ma15217426</doi><orcidid>https://orcid.org/0000-0001-8973-5035</orcidid><orcidid>https://orcid.org/0000-0003-4400-2553</orcidid><orcidid>https://orcid.org/0000-0001-6588-4546</orcidid><orcidid>https://orcid.org/0000-0003-4161-6875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-10, Vol.15 (21), p.7426
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9657977
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Aluminum oxide
Argon
Catalysts
Catalytic activity
Chemicals
Decomposition
Dielectric barrier discharge
Dopants
Energy
Hydrogen
Hydrogen evolution
Hydrogen sulfide
Methods
Nanocomposites
Nitrates
Photocatalysis
Plasma
Spectrum analysis
Thermal plasmas
Zincblende
title Catalytic Hydrogen Evolution from H2S Cracking over CrxZnS Catalyst in a Cylindrical Single-Layered Dielectric Barrier Discharge Plasma Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Hydrogen%20Evolution%20from%20H2S%20Cracking%20over%20CrxZnS%20Catalyst%20in%20a%20Cylindrical%20Single-Layered%20Dielectric%20Barrier%20Discharge%20Plasma%20Reactor&rft.jtitle=Materials&rft.au=Afzal,%20Saba&rft.date=2022-10-23&rft.volume=15&rft.issue=21&rft.spage=7426&rft.pages=7426-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15217426&rft_dat=%3Cproquest_pubme%3E2734690458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734690458&rft_id=info:pmid/36363018&rfr_iscdi=true