Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo
A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topo...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-11, Vol.23 (21), p.12953 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 12953 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Blinova, Ekaterina Turovsky, Egor Eliseikina, Elena Igrunkova, Alexandra Semeleva, Elena Golodnev, Grigorii Termulaeva, Rita Vasilkina, Olga Skachilova, Sofia Mazov, Yan Zhandarov, Kirill Simakina, Ekaterina Belanov, Konstantin Zalogin, Saveliy Blinov, Dmitrii |
description | A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10–100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1β and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats’ cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for |
doi_str_mv | 10.3390/ijms232112953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9655885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734641523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d97da10cfecea2b87734aaca32240437080fb1ffee423cc3ed7ebf6b025788963</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS1UxPeRu6VeegnYnsSOL5XapYWVEHAArsZxJotXSby1kxX73xM-hKCnmdH85mmeHiHHnJ0AaHbql10SIDgXuoAtssdzITLGpPr2qd8l-yktGZvAQu-QXZAguQK9Rx6uwhpberGpY3jarDbR175HOgvdKox9TW9iGNANif6O1vd0hm2bqF1MfRroPLlH7LyjZ7azC6Tznt77IQZqp8vXYR0OyXZj24RH7_WA3P39czu7yC6vz-ezX5eZAy2GrNaqtpy5Bh1aUZVKQW6tsyBEznJQrGRNxZsGMRfgHGCtsGpkxUShylJLOCA_33RXY9Vh7bAfom3NKvrOxo0J1puvm94_mkVYGy2LoiyLSeDHu0AM_0ZMg-l8cpNf22MYkxEKilJKzfWEfv8PXYYx9pO9FyqXOS8ETFT2RrkYUorYfDzDmXnJznzJDp4BLTuMlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734641523</pqid></control><display><type>article</type><title>Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Blinova, Ekaterina ; Turovsky, Egor ; Eliseikina, Elena ; Igrunkova, Alexandra ; Semeleva, Elena ; Golodnev, Grigorii ; Termulaeva, Rita ; Vasilkina, Olga ; Skachilova, Sofia ; Mazov, Yan ; Zhandarov, Kirill ; Simakina, Ekaterina ; Belanov, Konstantin ; Zalogin, Saveliy ; Blinov, Dmitrii</creator><creatorcontrib>Blinova, Ekaterina ; Turovsky, Egor ; Eliseikina, Elena ; Igrunkova, Alexandra ; Semeleva, Elena ; Golodnev, Grigorii ; Termulaeva, Rita ; Vasilkina, Olga ; Skachilova, Sofia ; Mazov, Yan ; Zhandarov, Kirill ; Simakina, Ekaterina ; Belanov, Konstantin ; Zalogin, Saveliy ; Blinov, Dmitrii</creatorcontrib><description>A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10–100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1β and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats’ cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for further pre-clinical investigation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms232112953</identifier><identifier>PMID: 36361739</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acids ; Antioxidants ; Apoptosis ; Astrocytes ; Bcl-2 protein ; Brain ; Brain damage ; Brain injury ; Calcium (intracellular) ; Calcium ions ; Calcium signalling ; Cell culture ; Cell death ; Cell viability ; Cerebral blood flow ; Cerebral cortex ; Cytosol ; Deprivation ; Evaluation ; Excitotoxicity ; Fluorescence ; Fura-2 ; Gene expression ; Genes ; Glucose ; Hypoxia ; IL-1β ; Intravenous administration ; Ischemia ; Laboratories ; Medical imaging ; Necrosis ; Neuroprotection ; Oxidative stress ; Polymerase chain reaction ; Propidium iodide ; Proteins ; Rats ; Reperfusion ; Stat3 protein</subject><ispartof>International journal of molecular sciences, 2022-11, Vol.23 (21), p.12953</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d97da10cfecea2b87734aaca32240437080fb1ffee423cc3ed7ebf6b025788963</citedby><cites>FETCH-LOGICAL-c392t-d97da10cfecea2b87734aaca32240437080fb1ffee423cc3ed7ebf6b025788963</cites><orcidid>0000-0001-7881-2912 ; 0000-0002-2528-8798 ; 0000-0002-8385-4356 ; 0000-0003-4804-4398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655885/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9655885/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Blinova, Ekaterina</creatorcontrib><creatorcontrib>Turovsky, Egor</creatorcontrib><creatorcontrib>Eliseikina, Elena</creatorcontrib><creatorcontrib>Igrunkova, Alexandra</creatorcontrib><creatorcontrib>Semeleva, Elena</creatorcontrib><creatorcontrib>Golodnev, Grigorii</creatorcontrib><creatorcontrib>Termulaeva, Rita</creatorcontrib><creatorcontrib>Vasilkina, Olga</creatorcontrib><creatorcontrib>Skachilova, Sofia</creatorcontrib><creatorcontrib>Mazov, Yan</creatorcontrib><creatorcontrib>Zhandarov, Kirill</creatorcontrib><creatorcontrib>Simakina, Ekaterina</creatorcontrib><creatorcontrib>Belanov, Konstantin</creatorcontrib><creatorcontrib>Zalogin, Saveliy</creatorcontrib><creatorcontrib>Blinov, Dmitrii</creatorcontrib><title>Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo</title><title>International journal of molecular sciences</title><description>A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10–100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1β and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats’ cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for further pre-clinical investigation.</description><subject>Acids</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Astrocytes</subject><subject>Bcl-2 protein</subject><subject>Brain</subject><subject>Brain damage</subject><subject>Brain injury</subject><subject>Calcium (intracellular)</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cell viability</subject><subject>Cerebral blood flow</subject><subject>Cerebral cortex</subject><subject>Cytosol</subject><subject>Deprivation</subject><subject>Evaluation</subject><subject>Excitotoxicity</subject><subject>Fluorescence</subject><subject>Fura-2</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glucose</subject><subject>Hypoxia</subject><subject>IL-1β</subject><subject>Intravenous administration</subject><subject>Ischemia</subject><subject>Laboratories</subject><subject>Medical imaging</subject><subject>Necrosis</subject><subject>Neuroprotection</subject><subject>Oxidative stress</subject><subject>Polymerase chain reaction</subject><subject>Propidium iodide</subject><subject>Proteins</subject><subject>Rats</subject><subject>Reperfusion</subject><subject>Stat3 protein</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1P3DAQxS1UxPeRu6VeegnYnsSOL5XapYWVEHAArsZxJotXSby1kxX73xM-hKCnmdH85mmeHiHHnJ0AaHbql10SIDgXuoAtssdzITLGpPr2qd8l-yktGZvAQu-QXZAguQK9Rx6uwhpberGpY3jarDbR175HOgvdKox9TW9iGNANif6O1vd0hm2bqF1MfRroPLlH7LyjZ7azC6Tznt77IQZqp8vXYR0OyXZj24RH7_WA3P39czu7yC6vz-ezX5eZAy2GrNaqtpy5Bh1aUZVKQW6tsyBEznJQrGRNxZsGMRfgHGCtsGpkxUShylJLOCA_33RXY9Vh7bAfom3NKvrOxo0J1puvm94_mkVYGy2LoiyLSeDHu0AM_0ZMg-l8cpNf22MYkxEKilJKzfWEfv8PXYYx9pO9FyqXOS8ETFT2RrkYUorYfDzDmXnJznzJDp4BLTuMlg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Blinova, Ekaterina</creator><creator>Turovsky, Egor</creator><creator>Eliseikina, Elena</creator><creator>Igrunkova, Alexandra</creator><creator>Semeleva, Elena</creator><creator>Golodnev, Grigorii</creator><creator>Termulaeva, Rita</creator><creator>Vasilkina, Olga</creator><creator>Skachilova, Sofia</creator><creator>Mazov, Yan</creator><creator>Zhandarov, Kirill</creator><creator>Simakina, Ekaterina</creator><creator>Belanov, Konstantin</creator><creator>Zalogin, Saveliy</creator><creator>Blinov, Dmitrii</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7881-2912</orcidid><orcidid>https://orcid.org/0000-0002-2528-8798</orcidid><orcidid>https://orcid.org/0000-0002-8385-4356</orcidid><orcidid>https://orcid.org/0000-0003-4804-4398</orcidid></search><sort><creationdate>20221101</creationdate><title>Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo</title><author>Blinova, Ekaterina ; Turovsky, Egor ; Eliseikina, Elena ; Igrunkova, Alexandra ; Semeleva, Elena ; Golodnev, Grigorii ; Termulaeva, Rita ; Vasilkina, Olga ; Skachilova, Sofia ; Mazov, Yan ; Zhandarov, Kirill ; Simakina, Ekaterina ; Belanov, Konstantin ; Zalogin, Saveliy ; Blinov, Dmitrii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d97da10cfecea2b87734aaca32240437080fb1ffee423cc3ed7ebf6b025788963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Astrocytes</topic><topic>Bcl-2 protein</topic><topic>Brain</topic><topic>Brain damage</topic><topic>Brain injury</topic><topic>Calcium (intracellular)</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cell viability</topic><topic>Cerebral blood flow</topic><topic>Cerebral cortex</topic><topic>Cytosol</topic><topic>Deprivation</topic><topic>Evaluation</topic><topic>Excitotoxicity</topic><topic>Fluorescence</topic><topic>Fura-2</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glucose</topic><topic>Hypoxia</topic><topic>IL-1β</topic><topic>Intravenous administration</topic><topic>Ischemia</topic><topic>Laboratories</topic><topic>Medical imaging</topic><topic>Necrosis</topic><topic>Neuroprotection</topic><topic>Oxidative stress</topic><topic>Polymerase chain reaction</topic><topic>Propidium iodide</topic><topic>Proteins</topic><topic>Rats</topic><topic>Reperfusion</topic><topic>Stat3 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blinova, Ekaterina</creatorcontrib><creatorcontrib>Turovsky, Egor</creatorcontrib><creatorcontrib>Eliseikina, Elena</creatorcontrib><creatorcontrib>Igrunkova, Alexandra</creatorcontrib><creatorcontrib>Semeleva, Elena</creatorcontrib><creatorcontrib>Golodnev, Grigorii</creatorcontrib><creatorcontrib>Termulaeva, Rita</creatorcontrib><creatorcontrib>Vasilkina, Olga</creatorcontrib><creatorcontrib>Skachilova, Sofia</creatorcontrib><creatorcontrib>Mazov, Yan</creatorcontrib><creatorcontrib>Zhandarov, Kirill</creatorcontrib><creatorcontrib>Simakina, Ekaterina</creatorcontrib><creatorcontrib>Belanov, Konstantin</creatorcontrib><creatorcontrib>Zalogin, Saveliy</creatorcontrib><creatorcontrib>Blinov, Dmitrii</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinova, Ekaterina</au><au>Turovsky, Egor</au><au>Eliseikina, Elena</au><au>Igrunkova, Alexandra</au><au>Semeleva, Elena</au><au>Golodnev, Grigorii</au><au>Termulaeva, Rita</au><au>Vasilkina, Olga</au><au>Skachilova, Sofia</au><au>Mazov, Yan</au><au>Zhandarov, Kirill</au><au>Simakina, Ekaterina</au><au>Belanov, Konstantin</au><au>Zalogin, Saveliy</au><au>Blinov, Dmitrii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>23</volume><issue>21</issue><spage>12953</spage><pages>12953-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>A non-surgical pharmacological approach to control cellular vitality and functionality during ischemic and/or reperfusion-induced phases of strokes remains extremely important. The synthesis of 2-ethyl-6-methyl-3-hydroxypyridinium gammalactone-2,3-dehydro-L-gulonate (3-EA) was performed using a topochemical reaction. The cell-protective effects of 3-EA were studied on a model of glutamate excitotoxicity (GluTox) and glucose-oxygen deprivation (OGD) in a culture of NMRI mice cortical cells. Ca2+ dynamics was studied using fluorescent bioimaging and a Fura-2 probe, cell viability was assessed using cytochemical staining with propidium iodide, and gene expression was assessed by a real-time polymerase chain reaction. The compound anti-ischemic efficacy in vivo was evaluated on a model of irreversible middle cerebral artery (MCA) occlusion in Sprague-Dawley male rats. Brain morphological changes and antioxidant capacity were assessed one week after the pathology onset. The severity of neurological disorder was evaluated dynamically. 3-EA suppressed cortical cell death in a dose-dependent manner under the excitotoxic effect of glutamate and ischemia/reoxygenation. Pre-incubation of cerebral cortex cells with 10–100 µM 3-EA led to significant stagnation in Ca2+ concentration in a cytosol ([Ca2+]i) of neurons and astrocytes suffering GluTox and OGD. Decreasing intracellular Ca2+ and establishing a lower [Ca2+]i baseline inhibited necrotic cell death in an acute experiment. The mechanism of 3-EA cytoprotective action involved changes in the baseline and ischemia/reoxygenation-induced expression of genes encoding anti-apoptotic proteins and proteins of the oxidative status; this led to inhibition of the late irreversible stages of apoptosis. Incubation of brain cortex cells with 3-EA induced an overexpression of the anti-apoptotic genes BCL-2, STAT3, and SOCS3, whereas the expression of genes regulating necrosis and inflammation (TRAIL, MLKL, Cas-1, Cas-3, IL-1β and TNFa) were suppressed. 3-EA 18.0 mg/kg intravenous daily administration for 7 days following MCA occlusion preserved rats’ cortex neuron population, decreased the severity of neurological deficit, and spared antioxidant capacity of damaged tissues. 3-EA demonstrated proven short-term anti-ischemic activity in vivo and in vitro, which can be associated with antioxidant activity and the ability to target necrotic and apoptotic death. The compound may be considered a potential neuroprotective molecule for further pre-clinical investigation.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36361739</pmid><doi>10.3390/ijms232112953</doi><orcidid>https://orcid.org/0000-0001-7881-2912</orcidid><orcidid>https://orcid.org/0000-0002-2528-8798</orcidid><orcidid>https://orcid.org/0000-0002-8385-4356</orcidid><orcidid>https://orcid.org/0000-0003-4804-4398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-11, Vol.23 (21), p.12953 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9655885 |
source | MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library |
subjects | Acids Antioxidants Apoptosis Astrocytes Bcl-2 protein Brain Brain damage Brain injury Calcium (intracellular) Calcium ions Calcium signalling Cell culture Cell death Cell viability Cerebral blood flow Cerebral cortex Cytosol Deprivation Evaluation Excitotoxicity Fluorescence Fura-2 Gene expression Genes Glucose Hypoxia IL-1β Intravenous administration Ischemia Laboratories Medical imaging Necrosis Neuroprotection Oxidative stress Polymerase chain reaction Propidium iodide Proteins Rats Reperfusion Stat3 protein |
title | Novel Hydroxypyridine Compound Protects Brain Cells against Ischemic Damage In Vitro and In Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Hydroxypyridine%20Compound%20Protects%20Brain%20Cells%20against%20Ischemic%20Damage%20In%20Vitro%20and%20In%20Vivo&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Blinova,%20Ekaterina&rft.date=2022-11-01&rft.volume=23&rft.issue=21&rft.spage=12953&rft.pages=12953-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms232112953&rft_dat=%3Cproquest_pubme%3E2734641523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734641523&rft_id=info:pmid/36361739&rfr_iscdi=true |