Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite

In the present work, parameters for adapting the behavior of the uniaxial three-element viscoelastic constitutive model with integer and fractional index derivatives to the mechanical evolution of an epoxy-composite material reinforced with long random henequen fibers, were determined. Cyclic loadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-10, Vol.14 (21), p.4634
Hauptverfasser: Rodríguez Soto, Angel Alexander, Valín Rivera, José Luís, Sanabio Alves Borges, Lavinia María, Palomares Ruiz, Juan Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 4634
container_title Polymers
container_volume 14
creator Rodríguez Soto, Angel Alexander
Valín Rivera, José Luís
Sanabio Alves Borges, Lavinia María
Palomares Ruiz, Juan Enrique
description In the present work, parameters for adapting the behavior of the uniaxial three-element viscoelastic constitutive model with integer and fractional index derivatives to the mechanical evolution of an epoxy-composite material reinforced with long random henequen fibers, were determined. Cyclic loading–unloading with 0.1%, 0.2%, 0.3%, …, 1.0% controlled strain and staggered fluency experiments at 5 MPa, 10 MPa, and 15 MPa constant tension were performed in stages, and the obtained data were used to determine and validate the model’s parameter values. The Inverse Method of Identification was used to calculate the parameters, and the Particle Swarm Optimization (PSO) method was employed to achieve minimization of the error function. A comparison between the simulated uniaxial results and the experimental data is demonstrated graphically. There exists a strong dependence between properties of the composite and the fiber content (0 wt%, 9 wt%, 14 wt%, 22 wt%, and 28 wt% weight percentage fiber/matrix), and therefore also of the model parameter values. Both uniaxial models follow the viscoelastic behavior of the material and the fractional index version presents the best accuracy. The latter method was noted to be adequate for determination of the aforementioned constants using non-large experimental data and procedures that are easy to implement.
doi_str_mv 10.3390/polym14214634
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746439793</galeid><sourcerecordid>A746439793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-b96c9e5ae47f1bbc377f8b4efb609b7450112ea6384621448a114dbc12601cdf3</originalsourceid><addsrcrecordid>eNpdUcFOGzEQtVARQcCRu6Veelmw1147e6kURQ1EomqFgKtle8fBkXed2hsEf49DUNXUc_Bo5s2beTMIXVJyxVhLrjcxvPWU15QLxo_QaU0kqzgT5Ms__gRd5Lwm5fFGCCpP0IQJJhpRy1P0_Fsn3cMICS87GEbvvNWjjwOODi-StjtfB7wcOnjFTz7bCEHn0Vv8M3YQsIsJP8EKRm0CVAtvCtM9-KHELXR4HvtNzH6Ec3TsdMhw8fmfocfFj4f5bXX362Y5n91VljM6VqYVtoVGA5eOGmOZlG5qODgjSGskbwilNWjBplwU2XyqKeWdsbQWhNrOsTP0fc-72ZoeOls0JR3UJvlepzcVtVeHmcE_q1V8Ua1oOGtlIfj2SZDiny3kUfVFNYSgB4jbrGrJmqkUTdMW6Nf_oOu4TWVdHyguKRW8LqirPWqlA6jdZkpfW6yD3ts4gPMlPpNc7Pq3rBRU-wKbYs4J3N_pKVG7u6uDu7N3g2egoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734711642</pqid></control><display><type>article</type><title>Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Rodríguez Soto, Angel Alexander ; Valín Rivera, José Luís ; Sanabio Alves Borges, Lavinia María ; Palomares Ruiz, Juan Enrique</creator><creatorcontrib>Rodríguez Soto, Angel Alexander ; Valín Rivera, José Luís ; Sanabio Alves Borges, Lavinia María ; Palomares Ruiz, Juan Enrique</creatorcontrib><description>In the present work, parameters for adapting the behavior of the uniaxial three-element viscoelastic constitutive model with integer and fractional index derivatives to the mechanical evolution of an epoxy-composite material reinforced with long random henequen fibers, were determined. Cyclic loading–unloading with 0.1%, 0.2%, 0.3%, …, 1.0% controlled strain and staggered fluency experiments at 5 MPa, 10 MPa, and 15 MPa constant tension were performed in stages, and the obtained data were used to determine and validate the model’s parameter values. The Inverse Method of Identification was used to calculate the parameters, and the Particle Swarm Optimization (PSO) method was employed to achieve minimization of the error function. A comparison between the simulated uniaxial results and the experimental data is demonstrated graphically. There exists a strong dependence between properties of the composite and the fiber content (0 wt%, 9 wt%, 14 wt%, 22 wt%, and 28 wt% weight percentage fiber/matrix), and therefore also of the model parameter values. Both uniaxial models follow the viscoelastic behavior of the material and the fractional index version presents the best accuracy. The latter method was noted to be adequate for determination of the aforementioned constants using non-large experimental data and procedures that are easy to implement.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14214634</identifier><identifier>PMID: 36365627</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Composite materials ; Constitutive models ; Cyclic loads ; Deformation ; Epoxy resins ; Error functions ; Fiber composites ; Identification methods ; Inverse method ; Mathematical models ; Mathematical optimization ; Numerical analysis ; Optimization ; Parameter identification ; Particle swarm optimization ; Polymers ; Random variables ; Rheology ; Statistical analysis ; Vegetables ; Viscoelasticity ; Viscosity</subject><ispartof>Polymers, 2022-10, Vol.14 (21), p.4634</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-b96c9e5ae47f1bbc377f8b4efb609b7450112ea6384621448a114dbc12601cdf3</citedby><cites>FETCH-LOGICAL-c431t-b96c9e5ae47f1bbc377f8b4efb609b7450112ea6384621448a114dbc12601cdf3</cites><orcidid>0000-0002-1584-6901 ; 0000-0002-3410-4954 ; 0000-0001-7754-7221 ; 0000-0002-5512-9288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654397/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654397/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Rodríguez Soto, Angel Alexander</creatorcontrib><creatorcontrib>Valín Rivera, José Luís</creatorcontrib><creatorcontrib>Sanabio Alves Borges, Lavinia María</creatorcontrib><creatorcontrib>Palomares Ruiz, Juan Enrique</creatorcontrib><title>Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite</title><title>Polymers</title><description>In the present work, parameters for adapting the behavior of the uniaxial three-element viscoelastic constitutive model with integer and fractional index derivatives to the mechanical evolution of an epoxy-composite material reinforced with long random henequen fibers, were determined. Cyclic loading–unloading with 0.1%, 0.2%, 0.3%, …, 1.0% controlled strain and staggered fluency experiments at 5 MPa, 10 MPa, and 15 MPa constant tension were performed in stages, and the obtained data were used to determine and validate the model’s parameter values. The Inverse Method of Identification was used to calculate the parameters, and the Particle Swarm Optimization (PSO) method was employed to achieve minimization of the error function. A comparison between the simulated uniaxial results and the experimental data is demonstrated graphically. There exists a strong dependence between properties of the composite and the fiber content (0 wt%, 9 wt%, 14 wt%, 22 wt%, and 28 wt% weight percentage fiber/matrix), and therefore also of the model parameter values. Both uniaxial models follow the viscoelastic behavior of the material and the fractional index version presents the best accuracy. The latter method was noted to be adequate for determination of the aforementioned constants using non-large experimental data and procedures that are easy to implement.</description><subject>Algorithms</subject><subject>Composite materials</subject><subject>Constitutive models</subject><subject>Cyclic loads</subject><subject>Deformation</subject><subject>Epoxy resins</subject><subject>Error functions</subject><subject>Fiber composites</subject><subject>Identification methods</subject><subject>Inverse method</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Particle swarm optimization</subject><subject>Polymers</subject><subject>Random variables</subject><subject>Rheology</subject><subject>Statistical analysis</subject><subject>Vegetables</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUcFOGzEQtVARQcCRu6Veelmw1147e6kURQ1EomqFgKtle8fBkXed2hsEf49DUNXUc_Bo5s2beTMIXVJyxVhLrjcxvPWU15QLxo_QaU0kqzgT5Ms__gRd5Lwm5fFGCCpP0IQJJhpRy1P0_Fsn3cMICS87GEbvvNWjjwOODi-StjtfB7wcOnjFTz7bCEHn0Vv8M3YQsIsJP8EKRm0CVAtvCtM9-KHELXR4HvtNzH6Ec3TsdMhw8fmfocfFj4f5bXX362Y5n91VljM6VqYVtoVGA5eOGmOZlG5qODgjSGskbwilNWjBplwU2XyqKeWdsbQWhNrOsTP0fc-72ZoeOls0JR3UJvlepzcVtVeHmcE_q1V8Ua1oOGtlIfj2SZDiny3kUfVFNYSgB4jbrGrJmqkUTdMW6Nf_oOu4TWVdHyguKRW8LqirPWqlA6jdZkpfW6yD3ts4gPMlPpNc7Pq3rBRU-wKbYs4J3N_pKVG7u6uDu7N3g2egoA</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Rodríguez Soto, Angel Alexander</creator><creator>Valín Rivera, José Luís</creator><creator>Sanabio Alves Borges, Lavinia María</creator><creator>Palomares Ruiz, Juan Enrique</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1584-6901</orcidid><orcidid>https://orcid.org/0000-0002-3410-4954</orcidid><orcidid>https://orcid.org/0000-0001-7754-7221</orcidid><orcidid>https://orcid.org/0000-0002-5512-9288</orcidid></search><sort><creationdate>20221031</creationdate><title>Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite</title><author>Rodríguez Soto, Angel Alexander ; Valín Rivera, José Luís ; Sanabio Alves Borges, Lavinia María ; Palomares Ruiz, Juan Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-b96c9e5ae47f1bbc377f8b4efb609b7450112ea6384621448a114dbc12601cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Composite materials</topic><topic>Constitutive models</topic><topic>Cyclic loads</topic><topic>Deformation</topic><topic>Epoxy resins</topic><topic>Error functions</topic><topic>Fiber composites</topic><topic>Identification methods</topic><topic>Inverse method</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Particle swarm optimization</topic><topic>Polymers</topic><topic>Random variables</topic><topic>Rheology</topic><topic>Statistical analysis</topic><topic>Vegetables</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez Soto, Angel Alexander</creatorcontrib><creatorcontrib>Valín Rivera, José Luís</creatorcontrib><creatorcontrib>Sanabio Alves Borges, Lavinia María</creatorcontrib><creatorcontrib>Palomares Ruiz, Juan Enrique</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez Soto, Angel Alexander</au><au>Valín Rivera, José Luís</au><au>Sanabio Alves Borges, Lavinia María</au><au>Palomares Ruiz, Juan Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite</atitle><jtitle>Polymers</jtitle><date>2022-10-31</date><risdate>2022</risdate><volume>14</volume><issue>21</issue><spage>4634</spage><pages>4634-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>In the present work, parameters for adapting the behavior of the uniaxial three-element viscoelastic constitutive model with integer and fractional index derivatives to the mechanical evolution of an epoxy-composite material reinforced with long random henequen fibers, were determined. Cyclic loading–unloading with 0.1%, 0.2%, 0.3%, …, 1.0% controlled strain and staggered fluency experiments at 5 MPa, 10 MPa, and 15 MPa constant tension were performed in stages, and the obtained data were used to determine and validate the model’s parameter values. The Inverse Method of Identification was used to calculate the parameters, and the Particle Swarm Optimization (PSO) method was employed to achieve minimization of the error function. A comparison between the simulated uniaxial results and the experimental data is demonstrated graphically. There exists a strong dependence between properties of the composite and the fiber content (0 wt%, 9 wt%, 14 wt%, 22 wt%, and 28 wt% weight percentage fiber/matrix), and therefore also of the model parameter values. Both uniaxial models follow the viscoelastic behavior of the material and the fractional index version presents the best accuracy. The latter method was noted to be adequate for determination of the aforementioned constants using non-large experimental data and procedures that are easy to implement.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36365627</pmid><doi>10.3390/polym14214634</doi><orcidid>https://orcid.org/0000-0002-1584-6901</orcidid><orcidid>https://orcid.org/0000-0002-3410-4954</orcidid><orcidid>https://orcid.org/0000-0001-7754-7221</orcidid><orcidid>https://orcid.org/0000-0002-5512-9288</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-10, Vol.14 (21), p.4634
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654397
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Algorithms
Composite materials
Constitutive models
Cyclic loads
Deformation
Epoxy resins
Error functions
Fiber composites
Identification methods
Inverse method
Mathematical models
Mathematical optimization
Numerical analysis
Optimization
Parameter identification
Particle swarm optimization
Polymers
Random variables
Rheology
Statistical analysis
Vegetables
Viscoelasticity
Viscosity
title Parameter Identification of Fractional Index Viscoelastic Model for Vegetable-Fiber Reinforced Composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20Identification%20of%20Fractional%20Index%20Viscoelastic%20Model%20for%20Vegetable-Fiber%20Reinforced%20Composite&rft.jtitle=Polymers&rft.au=Rodr%C3%ADguez%20Soto,%20Angel%20Alexander&rft.date=2022-10-31&rft.volume=14&rft.issue=21&rft.spage=4634&rft.pages=4634-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14214634&rft_dat=%3Cgale_pubme%3EA746439793%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734711642&rft_id=info:pmid/36365627&rft_galeid=A746439793&rfr_iscdi=true