The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation

MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (21), p.7553
Hauptverfasser: Afonasenko, T. N., Glyzdova, D. V., Yurpalov, V. L., Konovalova, V. P., Rogov, V. A., Gerasimov, E. Yu, Bulavchenko, O. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 7553
container_title Materials
container_volume 15
creator Afonasenko, T. N.
Glyzdova, D. V.
Yurpalov, V. L.
Konovalova, V. P.
Rogov, V. A.
Gerasimov, E. Yu
Bulavchenko, O. A.
description MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO oxidation reaction. It was found that MnOx-CeO2, MnOx-ZrO2-CeO2, MnOx-ZrO2 catalysts, calcined at 400–500 °C, 650–700 °C and 500–650 °C, respectively, show the highest catalytic activity in the reaction of CO oxidation. According to XRD and TEM results, thermal stability of catalysts is determined by the temperature of decomposition of the solid solution Mnx(Ce,Zr)1−xO2. The TPR-H2 and EPR methods showed that the high activity in CO oxidation correlates with the content of easily reduced fine MnOx particles in the samples and the presence of paramagnetic defects in the form of oxygen vacancies. The maximum activity for each series of catalysts is associated with the start of solid solution decomposition. Formation of active phase shifts to the high-temperature region with the addition of zirconium to the MnOx-CeO2 catalyst.
doi_str_mv 10.3390/ma15217553
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745741095</galeid><sourcerecordid>A745741095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-521c861b480235f941a7d56692d52c769887801d275975291e9d1d514228a1e73</originalsourceid><addsrcrecordid>eNpdUV1LHTEQDWKpYn3pL1joSxHXZvKdF0EW-wGW-1D7Ugohd5PVyG5ik13p_ffN9Yq1zTxk5uTMmRMGobeAzyjV-MNkgROQnNM9dAhaixY0Y_sv8gN0XModrodSUES_RgdU1ADGDtHP61vffJsXt2nS0NQiT3asgF2HMcyP4NfY_sht50-3WecbG90Oa1a_g_NNZ2c7bspcmiHlpls9wnYOKb5BrwY7Fn_8dB-h7x8vr7vP7dXq05fu4qrtKSdzW_33SsCaKUwoHzQDKx0XQhPHSS-FVkoqDI5IriUnGrx24DgwQpQFL-kROt_p3i_rybvexznb0dznMNm8MckG8-9LDLfmJj0YLTjDAleB908COf1afJnNFErvx9FGn5ZiiKRcSajuKvXdf9S7tORYv7dlMaG4wrqyznasGzt6E-KQ6ty-hvNT6FP0Q6j4hWRcMsB6K3uya-hzKiX74dk9YLNdtPm7aPoHFEaUpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734685809</pqid></control><display><type>article</type><title>The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Afonasenko, T. N. ; Glyzdova, D. V. ; Yurpalov, V. L. ; Konovalova, V. P. ; Rogov, V. A. ; Gerasimov, E. Yu ; Bulavchenko, O. A.</creator><creatorcontrib>Afonasenko, T. N. ; Glyzdova, D. V. ; Yurpalov, V. L. ; Konovalova, V. P. ; Rogov, V. A. ; Gerasimov, E. Yu ; Bulavchenko, O. A.</creatorcontrib><description>MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO oxidation reaction. It was found that MnOx-CeO2, MnOx-ZrO2-CeO2, MnOx-ZrO2 catalysts, calcined at 400–500 °C, 650–700 °C and 500–650 °C, respectively, show the highest catalytic activity in the reaction of CO oxidation. According to XRD and TEM results, thermal stability of catalysts is determined by the temperature of decomposition of the solid solution Mnx(Ce,Zr)1−xO2. The TPR-H2 and EPR methods showed that the high activity in CO oxidation correlates with the content of easily reduced fine MnOx particles in the samples and the presence of paramagnetic defects in the form of oxygen vacancies. The maximum activity for each series of catalysts is associated with the start of solid solution decomposition. Formation of active phase shifts to the high-temperature region with the addition of zirconium to the MnOx-CeO2 catalyst.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15217553</identifier><identifier>PMID: 36363144</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Carbon monoxide ; Catalysts ; Catalytic activity ; Cerium oxides ; Decomposition ; High temperature ; Oxidation ; Oxidation-reduction reaction ; Oxides ; Roasting ; Solid solutions ; Spectrum analysis ; Thermal stability ; VOCs ; Volatile organic compounds ; Zirconium ; Zirconium dioxide</subject><ispartof>Materials, 2022-10, Vol.15 (21), p.7553</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-521c861b480235f941a7d56692d52c769887801d275975291e9d1d514228a1e73</citedby><cites>FETCH-LOGICAL-c352t-521c861b480235f941a7d56692d52c769887801d275975291e9d1d514228a1e73</cites><orcidid>0000-0002-7228-2807 ; 0000-0002-7243-5498 ; 0000-0001-5944-2629 ; 0000-0002-3230-3335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654060/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654060/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids></links><search><creatorcontrib>Afonasenko, T. N.</creatorcontrib><creatorcontrib>Glyzdova, D. V.</creatorcontrib><creatorcontrib>Yurpalov, V. L.</creatorcontrib><creatorcontrib>Konovalova, V. P.</creatorcontrib><creatorcontrib>Rogov, V. A.</creatorcontrib><creatorcontrib>Gerasimov, E. Yu</creatorcontrib><creatorcontrib>Bulavchenko, O. A.</creatorcontrib><title>The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation</title><title>Materials</title><description>MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO oxidation reaction. It was found that MnOx-CeO2, MnOx-ZrO2-CeO2, MnOx-ZrO2 catalysts, calcined at 400–500 °C, 650–700 °C and 500–650 °C, respectively, show the highest catalytic activity in the reaction of CO oxidation. According to XRD and TEM results, thermal stability of catalysts is determined by the temperature of decomposition of the solid solution Mnx(Ce,Zr)1−xO2. The TPR-H2 and EPR methods showed that the high activity in CO oxidation correlates with the content of easily reduced fine MnOx particles in the samples and the presence of paramagnetic defects in the form of oxygen vacancies. The maximum activity for each series of catalysts is associated with the start of solid solution decomposition. Formation of active phase shifts to the high-temperature region with the addition of zirconium to the MnOx-CeO2 catalyst.</description><subject>Carbon monoxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cerium oxides</subject><subject>Decomposition</subject><subject>High temperature</subject><subject>Oxidation</subject><subject>Oxidation-reduction reaction</subject><subject>Oxides</subject><subject>Roasting</subject><subject>Solid solutions</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Zirconium</subject><subject>Zirconium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUV1LHTEQDWKpYn3pL1joSxHXZvKdF0EW-wGW-1D7Ugohd5PVyG5ik13p_ffN9Yq1zTxk5uTMmRMGobeAzyjV-MNkgROQnNM9dAhaixY0Y_sv8gN0XModrodSUES_RgdU1ADGDtHP61vffJsXt2nS0NQiT3asgF2HMcyP4NfY_sht50-3WecbG90Oa1a_g_NNZ2c7bspcmiHlpls9wnYOKb5BrwY7Fn_8dB-h7x8vr7vP7dXq05fu4qrtKSdzW_33SsCaKUwoHzQDKx0XQhPHSS-FVkoqDI5IriUnGrx24DgwQpQFL-kROt_p3i_rybvexznb0dznMNm8MckG8-9LDLfmJj0YLTjDAleB908COf1afJnNFErvx9FGn5ZiiKRcSajuKvXdf9S7tORYv7dlMaG4wrqyznasGzt6E-KQ6ty-hvNT6FP0Q6j4hWRcMsB6K3uya-hzKiX74dk9YLNdtPm7aPoHFEaUpA</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Afonasenko, T. N.</creator><creator>Glyzdova, D. V.</creator><creator>Yurpalov, V. L.</creator><creator>Konovalova, V. P.</creator><creator>Rogov, V. A.</creator><creator>Gerasimov, E. Yu</creator><creator>Bulavchenko, O. A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7228-2807</orcidid><orcidid>https://orcid.org/0000-0002-7243-5498</orcidid><orcidid>https://orcid.org/0000-0001-5944-2629</orcidid><orcidid>https://orcid.org/0000-0002-3230-3335</orcidid></search><sort><creationdate>20221027</creationdate><title>The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation</title><author>Afonasenko, T. N. ; Glyzdova, D. V. ; Yurpalov, V. L. ; Konovalova, V. P. ; Rogov, V. A. ; Gerasimov, E. Yu ; Bulavchenko, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-521c861b480235f941a7d56692d52c769887801d275975291e9d1d514228a1e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon monoxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cerium oxides</topic><topic>Decomposition</topic><topic>High temperature</topic><topic>Oxidation</topic><topic>Oxidation-reduction reaction</topic><topic>Oxides</topic><topic>Roasting</topic><topic>Solid solutions</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Zirconium</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afonasenko, T. N.</creatorcontrib><creatorcontrib>Glyzdova, D. V.</creatorcontrib><creatorcontrib>Yurpalov, V. L.</creatorcontrib><creatorcontrib>Konovalova, V. P.</creatorcontrib><creatorcontrib>Rogov, V. A.</creatorcontrib><creatorcontrib>Gerasimov, E. Yu</creatorcontrib><creatorcontrib>Bulavchenko, O. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afonasenko, T. N.</au><au>Glyzdova, D. V.</au><au>Yurpalov, V. L.</au><au>Konovalova, V. P.</au><au>Rogov, V. A.</au><au>Gerasimov, E. Yu</au><au>Bulavchenko, O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation</atitle><jtitle>Materials</jtitle><date>2022-10-27</date><risdate>2022</risdate><volume>15</volume><issue>21</issue><spage>7553</spage><pages>7553-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>MnOx-CeO2, MnOx-ZrO2, MnOx-ZrO2-CeO2 oxides with the Mn/(Zr + Ce + Mn) molar ratio of 0.3 were synthesized by coprecipitation method followed by calcination in the temperature range of 400–800 °C and characterized by XRD, N2 adsorption, TPR, TEM, and EPR. The catalytic activity was tested in the CO oxidation reaction. It was found that MnOx-CeO2, MnOx-ZrO2-CeO2, MnOx-ZrO2 catalysts, calcined at 400–500 °C, 650–700 °C and 500–650 °C, respectively, show the highest catalytic activity in the reaction of CO oxidation. According to XRD and TEM results, thermal stability of catalysts is determined by the temperature of decomposition of the solid solution Mnx(Ce,Zr)1−xO2. The TPR-H2 and EPR methods showed that the high activity in CO oxidation correlates with the content of easily reduced fine MnOx particles in the samples and the presence of paramagnetic defects in the form of oxygen vacancies. The maximum activity for each series of catalysts is associated with the start of solid solution decomposition. Formation of active phase shifts to the high-temperature region with the addition of zirconium to the MnOx-CeO2 catalyst.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36363144</pmid><doi>10.3390/ma15217553</doi><orcidid>https://orcid.org/0000-0002-7228-2807</orcidid><orcidid>https://orcid.org/0000-0002-7243-5498</orcidid><orcidid>https://orcid.org/0000-0001-5944-2629</orcidid><orcidid>https://orcid.org/0000-0002-3230-3335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-10, Vol.15 (21), p.7553
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654060
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Carbon monoxide
Catalysts
Catalytic activity
Cerium oxides
Decomposition
High temperature
Oxidation
Oxidation-reduction reaction
Oxides
Roasting
Solid solutions
Spectrum analysis
Thermal stability
VOCs
Volatile organic compounds
Zirconium
Zirconium dioxide
title The Study of Thermal Stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr Oxide Catalysts for CO Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Study%20of%20Thermal%20Stability%20of%20Mn-Zr-Ce,%20Mn-Ce%20and%20Mn-Zr%20Oxide%20Catalysts%20for%20CO%20Oxidation&rft.jtitle=Materials&rft.au=Afonasenko,%20T.%20N.&rft.date=2022-10-27&rft.volume=15&rft.issue=21&rft.spage=7553&rft.pages=7553-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15217553&rft_dat=%3Cgale_pubme%3EA745741095%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734685809&rft_id=info:pmid/36363144&rft_galeid=A745741095&rfr_iscdi=true