Fabrication and characterization of core–shell microparticles containing an aqueous core

Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2022-12, Vol.24 (4), p.40-40, Article 40
Hauptverfasser: Galogahi, Fariba Malekpour, Ansari, Abolfazl, Teo, Adrian J. T., Cha, Haotian, An, Hongjie, Nguyen, Nam-Trung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 4
container_start_page 40
container_title Biomedical microdevices
container_volume 24
creator Galogahi, Fariba Malekpour
Ansari, Abolfazl
Teo, Adrian J. T.
Cha, Haotian
An, Hongjie
Nguyen, Nam-Trung
description Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness. Graphical abstract
doi_str_mv 10.1007/s10544-022-00637-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734834082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</originalsourceid><addsrcrecordid>eNp9Ub1uFDEYtBARCQcvQLVSGpqFz__eJhKKcoAUiSY0NNa3Pt-doz37sPeQkirvkDfkSfBmI6JQUNnyNzPfjIeQdxQ-UAD9sVCQQrTAWAuguG67F-SESs1aow19We_c6JZRrY7J61KuAWinlHpFjrniUjLGT8iPJfY5OBxDig3GVeO2mNGNPofb-TGtG5ey_313X7Z-GJpdcDntMY_BDb7UWRwxxBA3ld7gz4NPh_LAeEOO1jgU__bxXJDvy4ur8y_t5bfPX88_XbZOSDq2RiijQGvNsedKOw69d9StqOmFZ7p3VKzRoO6UVJyCoDUqoMZOauqN7PiCnM26-0O_8yvn45hxsPscdphvbMJgn09i2NpN-mU7JToJk8D7R4Gcqv8y2l0ormbFOIWxTHNJNfC6eEFO_4Fep0OONd6EEoYLMKyi2IyqP1VK9uu_ZijYqTo7V2drdfahOju54DOpVHDc-Pwk_R_WH72cnBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734834082</pqid></control><display><type>article</type><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><source>SpringerLink Journals</source><creator>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</creator><creatorcontrib>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</creatorcontrib><description>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness. Graphical abstract</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-022-00637-9</identifier><identifier>PMID: 36355223</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Compression ; Double emulsions ; Droplets ; Drug delivery ; Drug delivery systems ; Engineering ; Engineering Fluid Dynamics ; Fabrication ; Flow velocity ; Microencapsulation ; Microfluidic devices ; Microfluidics ; Microparticles ; Nanotechnology ; Rupture ; Shells ; Thickness</subject><ispartof>Biomedical microdevices, 2022-12, Vol.24 (4), p.40-40, Article 40</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</citedby><cites>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</cites><orcidid>0000-0003-3626-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-022-00637-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-022-00637-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galogahi, Fariba Malekpour</creatorcontrib><creatorcontrib>Ansari, Abolfazl</creatorcontrib><creatorcontrib>Teo, Adrian J. T.</creatorcontrib><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><description>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness. Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Compression</subject><subject>Double emulsions</subject><subject>Droplets</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fabrication</subject><subject>Flow velocity</subject><subject>Microencapsulation</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microparticles</subject><subject>Nanotechnology</subject><subject>Rupture</subject><subject>Shells</subject><subject>Thickness</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Ub1uFDEYtBARCQcvQLVSGpqFz__eJhKKcoAUiSY0NNa3Pt-doz37sPeQkirvkDfkSfBmI6JQUNnyNzPfjIeQdxQ-UAD9sVCQQrTAWAuguG67F-SESs1aow19We_c6JZRrY7J61KuAWinlHpFjrniUjLGT8iPJfY5OBxDig3GVeO2mNGNPofb-TGtG5ey_313X7Z-GJpdcDntMY_BDb7UWRwxxBA3ld7gz4NPh_LAeEOO1jgU__bxXJDvy4ur8y_t5bfPX88_XbZOSDq2RiijQGvNsedKOw69d9StqOmFZ7p3VKzRoO6UVJyCoDUqoMZOauqN7PiCnM26-0O_8yvn45hxsPscdphvbMJgn09i2NpN-mU7JToJk8D7R4Gcqv8y2l0ormbFOIWxTHNJNfC6eEFO_4Fep0OONd6EEoYLMKyi2IyqP1VK9uu_ZijYqTo7V2drdfahOju54DOpVHDc-Pwk_R_WH72cnBE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Galogahi, Fariba Malekpour</creator><creator>Ansari, Abolfazl</creator><creator>Teo, Adrian J. T.</creator><creator>Cha, Haotian</creator><creator>An, Hongjie</creator><creator>Nguyen, Nam-Trung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid></search><sort><creationdate>20221201</creationdate><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><author>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Compression</topic><topic>Double emulsions</topic><topic>Droplets</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fabrication</topic><topic>Flow velocity</topic><topic>Microencapsulation</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microparticles</topic><topic>Nanotechnology</topic><topic>Rupture</topic><topic>Shells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galogahi, Fariba Malekpour</creatorcontrib><creatorcontrib>Ansari, Abolfazl</creatorcontrib><creatorcontrib>Teo, Adrian J. T.</creatorcontrib><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galogahi, Fariba Malekpour</au><au>Ansari, Abolfazl</au><au>Teo, Adrian J. T.</au><au>Cha, Haotian</au><au>An, Hongjie</au><au>Nguyen, Nam-Trung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of core–shell microparticles containing an aqueous core</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>40</spage><epage>40</epage><pages>40-40</pages><artnum>40</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36355223</pmid><doi>10.1007/s10544-022-00637-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2022-12, Vol.24 (4), p.40-40, Article 40
issn 1387-2176
1572-8781
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649509
source SpringerLink Journals
subjects Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Compression
Double emulsions
Droplets
Drug delivery
Drug delivery systems
Engineering
Engineering Fluid Dynamics
Fabrication
Flow velocity
Microencapsulation
Microfluidic devices
Microfluidics
Microparticles
Nanotechnology
Rupture
Shells
Thickness
title Fabrication and characterization of core–shell microparticles containing an aqueous core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20core%E2%80%93shell%20microparticles%20containing%20an%20aqueous%20core&rft.jtitle=Biomedical%20microdevices&rft.au=Galogahi,%20Fariba%20Malekpour&rft.date=2022-12-01&rft.volume=24&rft.issue=4&rft.spage=40&rft.epage=40&rft.pages=40-40&rft.artnum=40&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-022-00637-9&rft_dat=%3Cproquest_pubme%3E2734834082%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734834082&rft_id=info:pmid/36355223&rfr_iscdi=true