Fabrication and characterization of core–shell microparticles containing an aqueous core
Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the pe...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2022-12, Vol.24 (4), p.40-40, Article 40 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 4 |
container_start_page | 40 |
container_title | Biomedical microdevices |
container_volume | 24 |
creator | Galogahi, Fariba Malekpour Ansari, Abolfazl Teo, Adrian J. T. Cha, Haotian An, Hongjie Nguyen, Nam-Trung |
description | Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness.
Graphical abstract |
doi_str_mv | 10.1007/s10544-022-00637-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734834082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</originalsourceid><addsrcrecordid>eNp9Ub1uFDEYtBARCQcvQLVSGpqFz__eJhKKcoAUiSY0NNa3Pt-doz37sPeQkirvkDfkSfBmI6JQUNnyNzPfjIeQdxQ-UAD9sVCQQrTAWAuguG67F-SESs1aow19We_c6JZRrY7J61KuAWinlHpFjrniUjLGT8iPJfY5OBxDig3GVeO2mNGNPofb-TGtG5ey_313X7Z-GJpdcDntMY_BDb7UWRwxxBA3ld7gz4NPh_LAeEOO1jgU__bxXJDvy4ur8y_t5bfPX88_XbZOSDq2RiijQGvNsedKOw69d9StqOmFZ7p3VKzRoO6UVJyCoDUqoMZOauqN7PiCnM26-0O_8yvn45hxsPscdphvbMJgn09i2NpN-mU7JToJk8D7R4Gcqv8y2l0ormbFOIWxTHNJNfC6eEFO_4Fep0OONd6EEoYLMKyi2IyqP1VK9uu_ZijYqTo7V2drdfahOju54DOpVHDc-Pwk_R_WH72cnBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734834082</pqid></control><display><type>article</type><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><source>SpringerLink Journals</source><creator>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</creator><creatorcontrib>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</creatorcontrib><description>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness.
Graphical abstract</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-022-00637-9</identifier><identifier>PMID: 36355223</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Compression ; Double emulsions ; Droplets ; Drug delivery ; Drug delivery systems ; Engineering ; Engineering Fluid Dynamics ; Fabrication ; Flow velocity ; Microencapsulation ; Microfluidic devices ; Microfluidics ; Microparticles ; Nanotechnology ; Rupture ; Shells ; Thickness</subject><ispartof>Biomedical microdevices, 2022-12, Vol.24 (4), p.40-40, Article 40</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</citedby><cites>FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</cites><orcidid>0000-0003-3626-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-022-00637-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-022-00637-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Galogahi, Fariba Malekpour</creatorcontrib><creatorcontrib>Ansari, Abolfazl</creatorcontrib><creatorcontrib>Teo, Adrian J. T.</creatorcontrib><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><description>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Compression</subject><subject>Double emulsions</subject><subject>Droplets</subject><subject>Drug delivery</subject><subject>Drug delivery systems</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fabrication</subject><subject>Flow velocity</subject><subject>Microencapsulation</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Microparticles</subject><subject>Nanotechnology</subject><subject>Rupture</subject><subject>Shells</subject><subject>Thickness</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9Ub1uFDEYtBARCQcvQLVSGpqFz__eJhKKcoAUiSY0NNa3Pt-doz37sPeQkirvkDfkSfBmI6JQUNnyNzPfjIeQdxQ-UAD9sVCQQrTAWAuguG67F-SESs1aow19We_c6JZRrY7J61KuAWinlHpFjrniUjLGT8iPJfY5OBxDig3GVeO2mNGNPofb-TGtG5ey_313X7Z-GJpdcDntMY_BDb7UWRwxxBA3ld7gz4NPh_LAeEOO1jgU__bxXJDvy4ur8y_t5bfPX88_XbZOSDq2RiijQGvNsedKOw69d9StqOmFZ7p3VKzRoO6UVJyCoDUqoMZOauqN7PiCnM26-0O_8yvn45hxsPscdphvbMJgn09i2NpN-mU7JToJk8D7R4Gcqv8y2l0ormbFOIWxTHNJNfC6eEFO_4Fep0OONd6EEoYLMKyi2IyqP1VK9uu_ZijYqTo7V2drdfahOju54DOpVHDc-Pwk_R_WH72cnBE</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Galogahi, Fariba Malekpour</creator><creator>Ansari, Abolfazl</creator><creator>Teo, Adrian J. T.</creator><creator>Cha, Haotian</creator><creator>An, Hongjie</creator><creator>Nguyen, Nam-Trung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid></search><sort><creationdate>20221201</creationdate><title>Fabrication and characterization of core–shell microparticles containing an aqueous core</title><author>Galogahi, Fariba Malekpour ; Ansari, Abolfazl ; Teo, Adrian J. T. ; Cha, Haotian ; An, Hongjie ; Nguyen, Nam-Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8468607773ab367c30bec1cd18b4e27bc14fa8a79656310410630a7a9571e8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Compression</topic><topic>Double emulsions</topic><topic>Droplets</topic><topic>Drug delivery</topic><topic>Drug delivery systems</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fabrication</topic><topic>Flow velocity</topic><topic>Microencapsulation</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Microparticles</topic><topic>Nanotechnology</topic><topic>Rupture</topic><topic>Shells</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galogahi, Fariba Malekpour</creatorcontrib><creatorcontrib>Ansari, Abolfazl</creatorcontrib><creatorcontrib>Teo, Adrian J. T.</creatorcontrib><creatorcontrib>Cha, Haotian</creatorcontrib><creatorcontrib>An, Hongjie</creatorcontrib><creatorcontrib>Nguyen, Nam-Trung</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galogahi, Fariba Malekpour</au><au>Ansari, Abolfazl</au><au>Teo, Adrian J. T.</au><au>Cha, Haotian</au><au>An, Hongjie</au><au>Nguyen, Nam-Trung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of core–shell microparticles containing an aqueous core</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>40</spage><epage>40</epage><pages>40-40</pages><artnum>40</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>Core–shell microparticles containing an aqueous core have demonstrated their value for microencapsulation and drug delivery systems. The most important step in generating these uniquely structured microparticles is the formation of droplets and double emulsion. The droplet generator must meet the performance and reliability requirements, including accurate size control with tunability and monodispersity. Herein, we present a facile technique to generate surfactant-free core–shell droplets with an aqueous core in a microfluidic device. We demonstrate that the geometry of the core–shell droplets can be precisely adjusted by the flow rates of the droplet components. As the shell is polymerized after the formation of the core–shell droplets, the resulting solid microparticles ensure the encapsulation of the aqueous core and prevent undesired release. We then study experimentally and theoretically the behaviour of resultant microparticles under heating and compression. The microparticles demonstrate excellent stability under both thermal and mechanical loads. We show that the rupture force can be quantitatively predicted from the shell thickness relative to the outer shell radius. Experimental results and theoretical predictions confirm that the rupture force scales directly with the shell thickness.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36355223</pmid><doi>10.1007/s10544-022-00637-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3626-5361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2022-12, Vol.24 (4), p.40-40, Article 40 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649509 |
source | SpringerLink Journals |
subjects | Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Compression Double emulsions Droplets Drug delivery Drug delivery systems Engineering Engineering Fluid Dynamics Fabrication Flow velocity Microencapsulation Microfluidic devices Microfluidics Microparticles Nanotechnology Rupture Shells Thickness |
title | Fabrication and characterization of core–shell microparticles containing an aqueous core |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20core%E2%80%93shell%20microparticles%20containing%20an%20aqueous%20core&rft.jtitle=Biomedical%20microdevices&rft.au=Galogahi,%20Fariba%20Malekpour&rft.date=2022-12-01&rft.volume=24&rft.issue=4&rft.spage=40&rft.epage=40&rft.pages=40-40&rft.artnum=40&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-022-00637-9&rft_dat=%3Cproquest_pubme%3E2734834082%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734834082&rft_id=info:pmid/36355223&rfr_iscdi=true |