Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems
The GW-Bethe–Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-11, Vol.18 (11), p.6779-6793 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6793 |
---|---|
container_issue | 11 |
container_start_page | 6779 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Förster, Arno Visscher, Lucas |
description | The GW-Bethe–Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on large molecules. We herein show that eigenvalue-only self-consistency can lead to an unfaithful description of some excitonic states for chlorophyll dimers while the qsGW-BSE vertical excitation energies (VEEs) are in excellent agreement with spectroscopic experiments for chlorophyll monomers and dimers measured in the gas phase. Furthermore, VEEs from time-dependent density functional theory calculations tend to disagree with experimental values and using different range-separated hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use the new qsGW-BSE implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons. Using more than 11,000 (6000) basis functions, the calculation could be completed in less than 5 (2) days on a single modern compute node. In agreement with previous TD-DFT calculations using RSH kernels on models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters in the low-energy spectrum of the hexameric complex. Earlier works with RSH kernels have demonstrated that the protein environment facilitates the experimentally observed interchromophoric charge transfer. Therefore, future research will need to combine correlation effects beyond TD-DFT with an explicit treatment of environmental electrostatics. |
doi_str_mv | 10.1021/acs.jctc.2c00531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735251051</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-3679ff94f7b2dd5ec8deb5080426e0eedd60a4f7267154b5118ef1720ea6177a3</originalsourceid><addsrcrecordid>eNp1kc1qFEEUhRtRTIzuXTa4cWGP9dP10xtBm5gIAyKjuCxqqm9laqju6lRVC9n5Dr6hT5JKZgwouLoXzncP93Cq6iVGK4wIfqtNWu1NNitiEGIUP6pOMWu7puOEP37YsTypnqW0R4jSltCn1QnlBGEh5Wllvyw6uVnH7IyHegPeNn2YkksZplxffG8-QN7B75-_NtrPkCHW59eLzi5Mda-9Wfz9nmobYr3W8QrqfhfDGOZdiM7Um5tiNKbn1ROrfYIXx3lWfft4_rW_bNafLz7179eNbqnMDeWis7ZrrdiSYWBg5ABbhiRqCQcEMAwc6aISLkq2LcNYgsWCINAcC6HpWfXu4Dsv2xEGUzJE7dUc3ajjjQraqb-Vye3UVfihOt5K3Ili8PpoEMP1Aimr0SUD3usJwpIUEYRiJlvGCvrqH3QfljiVeIWijDCMGC4UOlAmhpQi2IdnMFJ3JapSororUR1LLCdvDif3yh_P_-K3iTehhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735251051</pqid></control><display><type>article</type><title>Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems</title><source>American Chemical Society Publications</source><creator>Förster, Arno ; Visscher, Lucas</creator><creatorcontrib>Förster, Arno ; Visscher, Lucas</creatorcontrib><description>The GW-Bethe–Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on large molecules. We herein show that eigenvalue-only self-consistency can lead to an unfaithful description of some excitonic states for chlorophyll dimers while the qsGW-BSE vertical excitation energies (VEEs) are in excellent agreement with spectroscopic experiments for chlorophyll monomers and dimers measured in the gas phase. Furthermore, VEEs from time-dependent density functional theory calculations tend to disagree with experimental values and using different range-separated hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use the new qsGW-BSE implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons. Using more than 11,000 (6000) basis functions, the calculation could be completed in less than 5 (2) days on a single modern compute node. In agreement with previous TD-DFT calculations using RSH kernels on models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters in the low-energy spectrum of the hexameric complex. Earlier works with RSH kernels have demonstrated that the protein environment facilitates the experimentally observed interchromophoric charge transfer. Therefore, future research will need to combine correlation effects beyond TD-DFT with an explicit treatment of environmental electrostatics.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00531</identifier><identifier>PMID: 36201788</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Basis functions ; Charge transfer ; Chlorophyll ; Chromophores ; Density functional theory ; Dimers ; Eigenvalues ; Electrostatics ; Elementary excitations ; Energy spectra ; Environmental effects ; Excitation ; Kernels ; Spectroscopy and Excited States ; Vapor phases</subject><ispartof>Journal of chemical theory and computation, 2022-11, Vol.18 (11), p.6779-6793</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 8, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-3679ff94f7b2dd5ec8deb5080426e0eedd60a4f7267154b5118ef1720ea6177a3</citedby><cites>FETCH-LOGICAL-a438t-3679ff94f7b2dd5ec8deb5080426e0eedd60a4f7267154b5118ef1720ea6177a3</cites><orcidid>0000-0002-0957-4081 ; 0000-0002-7748-6243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00531$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00531$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Förster, Arno</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><title>Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The GW-Bethe–Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on large molecules. We herein show that eigenvalue-only self-consistency can lead to an unfaithful description of some excitonic states for chlorophyll dimers while the qsGW-BSE vertical excitation energies (VEEs) are in excellent agreement with spectroscopic experiments for chlorophyll monomers and dimers measured in the gas phase. Furthermore, VEEs from time-dependent density functional theory calculations tend to disagree with experimental values and using different range-separated hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use the new qsGW-BSE implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons. Using more than 11,000 (6000) basis functions, the calculation could be completed in less than 5 (2) days on a single modern compute node. In agreement with previous TD-DFT calculations using RSH kernels on models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters in the low-energy spectrum of the hexameric complex. Earlier works with RSH kernels have demonstrated that the protein environment facilitates the experimentally observed interchromophoric charge transfer. Therefore, future research will need to combine correlation effects beyond TD-DFT with an explicit treatment of environmental electrostatics.</description><subject>Basis functions</subject><subject>Charge transfer</subject><subject>Chlorophyll</subject><subject>Chromophores</subject><subject>Density functional theory</subject><subject>Dimers</subject><subject>Eigenvalues</subject><subject>Electrostatics</subject><subject>Elementary excitations</subject><subject>Energy spectra</subject><subject>Environmental effects</subject><subject>Excitation</subject><subject>Kernels</subject><subject>Spectroscopy and Excited States</subject><subject>Vapor phases</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kc1qFEEUhRtRTIzuXTa4cWGP9dP10xtBm5gIAyKjuCxqqm9laqju6lRVC9n5Dr6hT5JKZgwouLoXzncP93Cq6iVGK4wIfqtNWu1NNitiEGIUP6pOMWu7puOEP37YsTypnqW0R4jSltCn1QnlBGEh5Wllvyw6uVnH7IyHegPeNn2YkksZplxffG8-QN7B75-_NtrPkCHW59eLzi5Mda-9Wfz9nmobYr3W8QrqfhfDGOZdiM7Um5tiNKbn1ROrfYIXx3lWfft4_rW_bNafLz7179eNbqnMDeWis7ZrrdiSYWBg5ABbhiRqCQcEMAwc6aISLkq2LcNYgsWCINAcC6HpWfXu4Dsv2xEGUzJE7dUc3ajjjQraqb-Vye3UVfihOt5K3Ili8PpoEMP1Aimr0SUD3usJwpIUEYRiJlvGCvrqH3QfljiVeIWijDCMGC4UOlAmhpQi2IdnMFJ3JapSororUR1LLCdvDif3yh_P_-K3iTehhw</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Förster, Arno</creator><creator>Visscher, Lucas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0957-4081</orcidid><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid></search><sort><creationdate>20221108</creationdate><title>Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems</title><author>Förster, Arno ; Visscher, Lucas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-3679ff94f7b2dd5ec8deb5080426e0eedd60a4f7267154b5118ef1720ea6177a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Charge transfer</topic><topic>Chlorophyll</topic><topic>Chromophores</topic><topic>Density functional theory</topic><topic>Dimers</topic><topic>Eigenvalues</topic><topic>Electrostatics</topic><topic>Elementary excitations</topic><topic>Energy spectra</topic><topic>Environmental effects</topic><topic>Excitation</topic><topic>Kernels</topic><topic>Spectroscopy and Excited States</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förster, Arno</creatorcontrib><creatorcontrib>Visscher, Lucas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förster, Arno</au><au>Visscher, Lucas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-11-08</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>6779</spage><epage>6793</epage><pages>6779-6793</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The GW-Bethe–Salpeter equation (BSE) method is promising for calculating the low-lying excitonic states of molecular systems. However, so far it has only been applied to rather small molecules and in the commonly implemented diagonal approximations to the electronic self-energy, it depends on a mean-field starting point. We describe here an implementation of the self-consistent and starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on large molecules. We herein show that eigenvalue-only self-consistency can lead to an unfaithful description of some excitonic states for chlorophyll dimers while the qsGW-BSE vertical excitation energies (VEEs) are in excellent agreement with spectroscopic experiments for chlorophyll monomers and dimers measured in the gas phase. Furthermore, VEEs from time-dependent density functional theory calculations tend to disagree with experimental values and using different range-separated hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use the new qsGW-BSE implementation to calculate the lowest excitation energies of the six chromophores of the photosystem II (PSII) reaction center (RC) with nearly 2000 correlated electrons. Using more than 11,000 (6000) basis functions, the calculation could be completed in less than 5 (2) days on a single modern compute node. In agreement with previous TD-DFT calculations using RSH kernels on models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters in the low-energy spectrum of the hexameric complex. Earlier works with RSH kernels have demonstrated that the protein environment facilitates the experimentally observed interchromophoric charge transfer. Therefore, future research will need to combine correlation effects beyond TD-DFT with an explicit treatment of environmental electrostatics.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>36201788</pmid><doi>10.1021/acs.jctc.2c00531</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0957-4081</orcidid><orcidid>https://orcid.org/0000-0002-7748-6243</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-11, Vol.18 (11), p.6779-6793 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648197 |
source | American Chemical Society Publications |
subjects | Basis functions Charge transfer Chlorophyll Chromophores Density functional theory Dimers Eigenvalues Electrostatics Elementary excitations Energy spectra Environmental effects Excitation Kernels Spectroscopy and Excited States Vapor phases |
title | Quasiparticle Self-Consistent GW-Bethe–Salpeter Equation Calculations for Large Chromophoric Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasiparticle%20Self-Consistent%20GW-Bethe%E2%80%93Salpeter%20Equation%20Calculations%20for%20Large%20Chromophoric%20Systems&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Fo%CC%88rster,%20Arno&rft.date=2022-11-08&rft.volume=18&rft.issue=11&rft.spage=6779&rft.epage=6793&rft.pages=6779-6793&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00531&rft_dat=%3Cproquest_pubme%3E2735251051%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735251051&rft_id=info:pmid/36201788&rfr_iscdi=true |