Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set
The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-der...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-11, Vol.18 (11), p.6757-6778 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6778 |
---|---|
container_issue | 11 |
container_start_page | 6757 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Oliveira, Marina P. Gonçalves, Yan M. H. Ol Gheta, S. Kashef Rieder, Salomé R. Horta, Bruno A. C. Hünenberger, Philippe H. |
description | The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔH vap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard–Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κ T , the isobaric thermal-expansion coefficient α P , the isobaric heat capacity c P , the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔG wat, and the free energy of solvation ΔG che in cyclohexane. For the target properties ρliq and ΔH vap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κ T , α P , ϵ, D, and ΔG che; and less accurate results in terms of c P and ΔG wat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution. |
doi_str_mv | 10.1021/acs.jctc.2c00524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2720930745</sourcerecordid><originalsourceid>FETCH-LOGICAL-a368t-49185b364ce3c12449f22e7b74223b7aa78487c63f5a9d54bfab4a78d368599e3</originalsourceid><addsrcrecordid>eNp1ksluFDEQhlsIRBa4c7TEJUjpwVsvviANQ0KQIgWR5GxVu90ZD267sT1sj8OT4s4MkUDiYltVX_1VZf1F8YLgBcGUvAYVFxuV1IIqjCvKHxWHpOKiFDWtHz-8SXtQHMW4wZgxTtnT4oDVRGBW8cPi18qPEwQTvUN-QGmt0a0zSfclAtejpbXlMvkRfdJT0FG7BMl4F2f25AKsfwX2Mzgd0VuIukdZ5eabRyvveu1yoPy4znF07oPKp9G2j-hqSmY0PzMNd2BcTPddr2HU6Oz7pIMZ5zYWvYME6FqnZ8WTAWzUz_f3cXF7fnazuigvr95_WC0vS2B1m0ouSFt1rOZKM0Uo52KgVDddwyllXQPQtLxtVM2GCkRf8W6Ajudgn6srITQ7Lt7sdKdtN-pe5SkCWDnlgSD8kB6M_DvjzFre-a9S1LwlbZsFTvYCwX_Z6pjkaKLS1uYP8tsoaUOxYLjhVUZf_oNu_Da4vF6mWEUrTJuZwjtKBR9j0MPDMATL2QAyG0DOBpB7A-SS013JfeaP5n_x3_LntBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735250275</pqid></control><display><type>article</type><title>Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set</title><source>ACS Publications</source><creator>Oliveira, Marina P. ; Gonçalves, Yan M. H. ; Ol Gheta, S. Kashef ; Rieder, Salomé R. ; Horta, Bruno A. C. ; Hünenberger, Philippe H.</creator><creatorcontrib>Oliveira, Marina P. ; Gonçalves, Yan M. H. ; Ol Gheta, S. Kashef ; Rieder, Salomé R. ; Horta, Bruno A. C. ; Hünenberger, Philippe H.</creatorcontrib><description>The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔH vap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard–Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κ T , the isobaric thermal-expansion coefficient α P , the isobaric heat capacity c P , the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔG wat, and the free energy of solvation ΔG che in cyclohexane. For the target properties ρliq and ΔH vap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κ T , α P , ϵ, D, and ΔG che; and less accurate results in terms of c P and ΔG wat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00524</identifier><identifier>PMID: 36190354</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Accuracy ; Alkanes ; Compressibility ; Cyclohexane ; Diffusion coefficient ; Enthalpy ; Free energy ; Molecular Mechanics ; Optimization ; Parameterization ; Parameters ; Representations ; Self diffusion ; Shear viscosity ; Solvation ; Thermal expansion ; Vaporization</subject><ispartof>Journal of chemical theory and computation, 2022-11, Vol.18 (11), p.6757-6778</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 8, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a368t-49185b364ce3c12449f22e7b74223b7aa78487c63f5a9d54bfab4a78d368599e3</citedby><cites>FETCH-LOGICAL-a368t-49185b364ce3c12449f22e7b74223b7aa78487c63f5a9d54bfab4a78d368599e3</cites><orcidid>0000-0002-9420-7998 ; 0000-0002-0216-9585 ; 0000-0001-8036-651X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00524$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00524$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Oliveira, Marina P.</creatorcontrib><creatorcontrib>Gonçalves, Yan M. H.</creatorcontrib><creatorcontrib>Ol Gheta, S. Kashef</creatorcontrib><creatorcontrib>Rieder, Salomé R.</creatorcontrib><creatorcontrib>Horta, Bruno A. C.</creatorcontrib><creatorcontrib>Hünenberger, Philippe H.</creatorcontrib><title>Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔH vap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard–Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κ T , the isobaric thermal-expansion coefficient α P , the isobaric heat capacity c P , the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔG wat, and the free energy of solvation ΔG che in cyclohexane. For the target properties ρliq and ΔH vap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κ T , α P , ϵ, D, and ΔG che; and less accurate results in terms of c P and ΔG wat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.</description><subject>Accuracy</subject><subject>Alkanes</subject><subject>Compressibility</subject><subject>Cyclohexane</subject><subject>Diffusion coefficient</subject><subject>Enthalpy</subject><subject>Free energy</subject><subject>Molecular Mechanics</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Representations</subject><subject>Self diffusion</subject><subject>Shear viscosity</subject><subject>Solvation</subject><subject>Thermal expansion</subject><subject>Vaporization</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1ksluFDEQhlsIRBa4c7TEJUjpwVsvviANQ0KQIgWR5GxVu90ZD267sT1sj8OT4s4MkUDiYltVX_1VZf1F8YLgBcGUvAYVFxuV1IIqjCvKHxWHpOKiFDWtHz-8SXtQHMW4wZgxTtnT4oDVRGBW8cPi18qPEwQTvUN-QGmt0a0zSfclAtejpbXlMvkRfdJT0FG7BMl4F2f25AKsfwX2Mzgd0VuIukdZ5eabRyvveu1yoPy4znF07oPKp9G2j-hqSmY0PzMNd2BcTPddr2HU6Oz7pIMZ5zYWvYME6FqnZ8WTAWzUz_f3cXF7fnazuigvr95_WC0vS2B1m0ouSFt1rOZKM0Uo52KgVDddwyllXQPQtLxtVM2GCkRf8W6Ajudgn6srITQ7Lt7sdKdtN-pe5SkCWDnlgSD8kB6M_DvjzFre-a9S1LwlbZsFTvYCwX_Z6pjkaKLS1uYP8tsoaUOxYLjhVUZf_oNu_Da4vF6mWEUrTJuZwjtKBR9j0MPDMATL2QAyG0DOBpB7A-SS013JfeaP5n_x3_LntBM</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Oliveira, Marina P.</creator><creator>Gonçalves, Yan M. H.</creator><creator>Ol Gheta, S. Kashef</creator><creator>Rieder, Salomé R.</creator><creator>Horta, Bruno A. C.</creator><creator>Hünenberger, Philippe H.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9420-7998</orcidid><orcidid>https://orcid.org/0000-0002-0216-9585</orcidid><orcidid>https://orcid.org/0000-0001-8036-651X</orcidid></search><sort><creationdate>20221108</creationdate><title>Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set</title><author>Oliveira, Marina P. ; Gonçalves, Yan M. H. ; Ol Gheta, S. Kashef ; Rieder, Salomé R. ; Horta, Bruno A. C. ; Hünenberger, Philippe H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a368t-49185b364ce3c12449f22e7b74223b7aa78487c63f5a9d54bfab4a78d368599e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Alkanes</topic><topic>Compressibility</topic><topic>Cyclohexane</topic><topic>Diffusion coefficient</topic><topic>Enthalpy</topic><topic>Free energy</topic><topic>Molecular Mechanics</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Representations</topic><topic>Self diffusion</topic><topic>Shear viscosity</topic><topic>Solvation</topic><topic>Thermal expansion</topic><topic>Vaporization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Marina P.</creatorcontrib><creatorcontrib>Gonçalves, Yan M. H.</creatorcontrib><creatorcontrib>Ol Gheta, S. Kashef</creatorcontrib><creatorcontrib>Rieder, Salomé R.</creatorcontrib><creatorcontrib>Horta, Bruno A. C.</creatorcontrib><creatorcontrib>Hünenberger, Philippe H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Marina P.</au><au>Gonçalves, Yan M. H.</au><au>Ol Gheta, S. Kashef</au><au>Rieder, Salomé R.</au><au>Horta, Bruno A. C.</au><au>Hünenberger, Philippe H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-11-08</date><risdate>2022</risdate><volume>18</volume><issue>11</issue><spage>6757</spage><epage>6778</epage><pages>6757-6778</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔH vap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard–Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κ T , the isobaric thermal-expansion coefficient α P , the isobaric heat capacity c P , the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔG wat, and the free energy of solvation ΔG che in cyclohexane. For the target properties ρliq and ΔH vap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κ T , α P , ϵ, D, and ΔG che; and less accurate results in terms of c P and ΔG wat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>36190354</pmid><doi>10.1021/acs.jctc.2c00524</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9420-7998</orcidid><orcidid>https://orcid.org/0000-0002-0216-9585</orcidid><orcidid>https://orcid.org/0000-0001-8036-651X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-11, Vol.18 (11), p.6757-6778 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648188 |
source | ACS Publications |
subjects | Accuracy Alkanes Compressibility Cyclohexane Diffusion coefficient Enthalpy Free energy Molecular Mechanics Optimization Parameterization Parameters Representations Self diffusion Shear viscosity Solvation Thermal expansion Vaporization |
title | Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20United-%20and%20All-Atom%20Representations%20of%20(Halo)alkanes%20Based%20on%20Two%20Condensed-Phase%20Force%20Fields%20Optimized%20against%20the%20Same%20Experimental%20Data%20Set&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Oliveira,%20Marina%20P.&rft.date=2022-11-08&rft.volume=18&rft.issue=11&rft.spage=6757&rft.epage=6778&rft.pages=6757-6778&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00524&rft_dat=%3Cproquest_pubme%3E2720930745%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735250275&rft_id=info:pmid/36190354&rfr_iscdi=true |