Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening

High-throughput analysis in fields such as industrial biotechnology, combinatorial chemistry, and life sciences is becoming increasingly important. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique providing exhaustive molecular information on complex samples. Flow NMR in particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-11, Vol.94 (44), p.15350-15358
Hauptverfasser: Wouters, Bert, Miggiels, Paul, Bezemer, Roland, van der Cruijsen, Elwin A.W., van Leeuwen, Erik, Gauvin, John, Houben, Klaartje, Babu Sai Sankar Gupta, Karthick, Zuijdwijk, Paul, Harms, Amy, Carvalho de Souza, Adriana, Hankemeier, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15358
container_issue 44
container_start_page 15350
container_title Analytical chemistry (Washington)
container_volume 94
creator Wouters, Bert
Miggiels, Paul
Bezemer, Roland
van der Cruijsen, Elwin A.W.
van Leeuwen, Erik
Gauvin, John
Houben, Klaartje
Babu Sai Sankar Gupta, Karthick
Zuijdwijk, Paul
Harms, Amy
Carvalho de Souza, Adriana
Hankemeier, Thomas
description High-throughput analysis in fields such as industrial biotechnology, combinatorial chemistry, and life sciences is becoming increasingly important. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique providing exhaustive molecular information on complex samples. Flow NMR in particular is a cost- and time-efficient method for large screenings. In this study, we have developed a novel 3.0 mm inner diameter polychlorotrifluoroethylene (PCTFE) flow cell for a segmented-flow analysis (SFA) – NMR automated platform. The platform uses FC-72 fluorinated oil and fluoropolymer components to achieve a fully fluorinated flow path. Samples were repeatably transferred from 96-deepwell plates to the flow cell by displacing a fixed volume of oil, with a transfer time of 42 s. 1H spectra were acquired fully automated with 500 and 600 MHz NMR spectrometers. The spectral performance of the novel PCTFE cell was equal to that of commercial glass cells. Peak area repeatability was excellent with a relative standard deviation of 0.1–0.5% for standard samples, and carryover was below 0.2% without intermediate washing. The sample temperature was conditioned by using a thermostated transfer line in order to reduce the equilibration time in the probe and increase the throughput. Finally, analysis of urine samples demonstrated the applicability of this platform for screening complex matrices.
doi_str_mv 10.1021/acs.analchem.2c03038
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9647699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730315882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-c64b6eefbc0b5c679dadc54513632f139deca514432df65b93f46c801b1e60e93</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhDVhYYsMmw3X8M8kGaTRiKFIpEi1ry3FufionHuyk1ex4B96QJ8HTGSrBgpUt3XM-3XMPIa8ZLBnk7J2xcWlG42yHwzK3wIEXT8iCyRwyVRT5U7IAAJ7lK4Az8iLGWwDGgKnn5IwrnhAKFsSt58kPZsKaXmM74Jh-2db5e7pO7H3sI_314ye9-vyV3vdTRw298nfo6NbNPvidd_sBA30wbNA52vhAL_q2y2664Oe2280TvbYBcezH9iV51hgX8dXpPSffth9uNhfZ5ZePnzbry8wIKabMKlEpxKayUEmrVmVtaiuFZGntvGG8rNEayYTged0oWZW8EcoWwCqGCrDk5-T9kbubqwFrm1IF4_Qu9IMJe-1Nr_-ejH2nW3-nSyVWqjwA3p4AwX-fMU566KNN-cyIfo46X6VrM5munKRv_pHe-jmk2z2opJRFCpBU4qiywccYsHlchoE-1KlTnfpPnfpUZ7LB0XaYPnL_a_kNe6WniA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735558679</pqid></control><display><type>article</type><title>Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening</title><source>American Chemical Society Journals</source><creator>Wouters, Bert ; Miggiels, Paul ; Bezemer, Roland ; van der Cruijsen, Elwin A.W. ; van Leeuwen, Erik ; Gauvin, John ; Houben, Klaartje ; Babu Sai Sankar Gupta, Karthick ; Zuijdwijk, Paul ; Harms, Amy ; Carvalho de Souza, Adriana ; Hankemeier, Thomas</creator><creatorcontrib>Wouters, Bert ; Miggiels, Paul ; Bezemer, Roland ; van der Cruijsen, Elwin A.W. ; van Leeuwen, Erik ; Gauvin, John ; Houben, Klaartje ; Babu Sai Sankar Gupta, Karthick ; Zuijdwijk, Paul ; Harms, Amy ; Carvalho de Souza, Adriana ; Hankemeier, Thomas</creatorcontrib><description>High-throughput analysis in fields such as industrial biotechnology, combinatorial chemistry, and life sciences is becoming increasingly important. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique providing exhaustive molecular information on complex samples. Flow NMR in particular is a cost- and time-efficient method for large screenings. In this study, we have developed a novel 3.0 mm inner diameter polychlorotrifluoroethylene (PCTFE) flow cell for a segmented-flow analysis (SFA) – NMR automated platform. The platform uses FC-72 fluorinated oil and fluoropolymer components to achieve a fully fluorinated flow path. Samples were repeatably transferred from 96-deepwell plates to the flow cell by displacing a fixed volume of oil, with a transfer time of 42 s. 1H spectra were acquired fully automated with 500 and 600 MHz NMR spectrometers. The spectral performance of the novel PCTFE cell was equal to that of commercial glass cells. Peak area repeatability was excellent with a relative standard deviation of 0.1–0.5% for standard samples, and carryover was below 0.2% without intermediate washing. The sample temperature was conditioned by using a thermostated transfer line in order to reduce the equilibration time in the probe and increase the throughput. Finally, analysis of urine samples demonstrated the applicability of this platform for screening complex matrices.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c03038</identifier><identifier>PMID: 36302160</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Automation ; Biotechnology ; Chemistry ; Combinatorial analysis ; Combinatorial chemistry ; Fluorination ; Fluoropolymers ; High-throughput screening ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Polychlorotrifluoroethylenes ; Screening ; Spectrometers ; Spectroscopy ; Transfer lines</subject><ispartof>Analytical chemistry (Washington), 2022-11, Vol.94 (44), p.15350-15358</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Nov 8, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-c64b6eefbc0b5c679dadc54513632f139deca514432df65b93f46c801b1e60e93</citedby><cites>FETCH-LOGICAL-a454t-c64b6eefbc0b5c679dadc54513632f139deca514432df65b93f46c801b1e60e93</cites><orcidid>0000-0001-7362-3987 ; 0000-0002-3528-2912 ; 0000-0002-2931-4295 ; 0000-0001-7871-2073 ; 0000-0001-8714-3968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c03038$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c03038$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Wouters, Bert</creatorcontrib><creatorcontrib>Miggiels, Paul</creatorcontrib><creatorcontrib>Bezemer, Roland</creatorcontrib><creatorcontrib>van der Cruijsen, Elwin A.W.</creatorcontrib><creatorcontrib>van Leeuwen, Erik</creatorcontrib><creatorcontrib>Gauvin, John</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Babu Sai Sankar Gupta, Karthick</creatorcontrib><creatorcontrib>Zuijdwijk, Paul</creatorcontrib><creatorcontrib>Harms, Amy</creatorcontrib><creatorcontrib>Carvalho de Souza, Adriana</creatorcontrib><creatorcontrib>Hankemeier, Thomas</creatorcontrib><title>Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>High-throughput analysis in fields such as industrial biotechnology, combinatorial chemistry, and life sciences is becoming increasingly important. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique providing exhaustive molecular information on complex samples. Flow NMR in particular is a cost- and time-efficient method for large screenings. In this study, we have developed a novel 3.0 mm inner diameter polychlorotrifluoroethylene (PCTFE) flow cell for a segmented-flow analysis (SFA) – NMR automated platform. The platform uses FC-72 fluorinated oil and fluoropolymer components to achieve a fully fluorinated flow path. Samples were repeatably transferred from 96-deepwell plates to the flow cell by displacing a fixed volume of oil, with a transfer time of 42 s. 1H spectra were acquired fully automated with 500 and 600 MHz NMR spectrometers. The spectral performance of the novel PCTFE cell was equal to that of commercial glass cells. Peak area repeatability was excellent with a relative standard deviation of 0.1–0.5% for standard samples, and carryover was below 0.2% without intermediate washing. The sample temperature was conditioned by using a thermostated transfer line in order to reduce the equilibration time in the probe and increase the throughput. Finally, analysis of urine samples demonstrated the applicability of this platform for screening complex matrices.</description><subject>Automation</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Combinatorial analysis</subject><subject>Combinatorial chemistry</subject><subject>Fluorination</subject><subject>Fluoropolymers</subject><subject>High-throughput screening</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Polychlorotrifluoroethylenes</subject><subject>Screening</subject><subject>Spectrometers</subject><subject>Spectroscopy</subject><subject>Transfer lines</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhS0EokPhDVhYYsMmw3X8M8kGaTRiKFIpEi1ry3FufionHuyk1ex4B96QJ8HTGSrBgpUt3XM-3XMPIa8ZLBnk7J2xcWlG42yHwzK3wIEXT8iCyRwyVRT5U7IAAJ7lK4Az8iLGWwDGgKnn5IwrnhAKFsSt58kPZsKaXmM74Jh-2db5e7pO7H3sI_314ye9-vyV3vdTRw298nfo6NbNPvidd_sBA30wbNA52vhAL_q2y2664Oe2280TvbYBcezH9iV51hgX8dXpPSffth9uNhfZ5ZePnzbry8wIKabMKlEpxKayUEmrVmVtaiuFZGntvGG8rNEayYTged0oWZW8EcoWwCqGCrDk5-T9kbubqwFrm1IF4_Qu9IMJe-1Nr_-ejH2nW3-nSyVWqjwA3p4AwX-fMU566KNN-cyIfo46X6VrM5munKRv_pHe-jmk2z2opJRFCpBU4qiywccYsHlchoE-1KlTnfpPnfpUZ7LB0XaYPnL_a_kNe6WniA</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Wouters, Bert</creator><creator>Miggiels, Paul</creator><creator>Bezemer, Roland</creator><creator>van der Cruijsen, Elwin A.W.</creator><creator>van Leeuwen, Erik</creator><creator>Gauvin, John</creator><creator>Houben, Klaartje</creator><creator>Babu Sai Sankar Gupta, Karthick</creator><creator>Zuijdwijk, Paul</creator><creator>Harms, Amy</creator><creator>Carvalho de Souza, Adriana</creator><creator>Hankemeier, Thomas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7362-3987</orcidid><orcidid>https://orcid.org/0000-0002-3528-2912</orcidid><orcidid>https://orcid.org/0000-0002-2931-4295</orcidid><orcidid>https://orcid.org/0000-0001-7871-2073</orcidid><orcidid>https://orcid.org/0000-0001-8714-3968</orcidid></search><sort><creationdate>20221108</creationdate><title>Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening</title><author>Wouters, Bert ; Miggiels, Paul ; Bezemer, Roland ; van der Cruijsen, Elwin A.W. ; van Leeuwen, Erik ; Gauvin, John ; Houben, Klaartje ; Babu Sai Sankar Gupta, Karthick ; Zuijdwijk, Paul ; Harms, Amy ; Carvalho de Souza, Adriana ; Hankemeier, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-c64b6eefbc0b5c679dadc54513632f139deca514432df65b93f46c801b1e60e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Combinatorial analysis</topic><topic>Combinatorial chemistry</topic><topic>Fluorination</topic><topic>Fluoropolymers</topic><topic>High-throughput screening</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Polychlorotrifluoroethylenes</topic><topic>Screening</topic><topic>Spectrometers</topic><topic>Spectroscopy</topic><topic>Transfer lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wouters, Bert</creatorcontrib><creatorcontrib>Miggiels, Paul</creatorcontrib><creatorcontrib>Bezemer, Roland</creatorcontrib><creatorcontrib>van der Cruijsen, Elwin A.W.</creatorcontrib><creatorcontrib>van Leeuwen, Erik</creatorcontrib><creatorcontrib>Gauvin, John</creatorcontrib><creatorcontrib>Houben, Klaartje</creatorcontrib><creatorcontrib>Babu Sai Sankar Gupta, Karthick</creatorcontrib><creatorcontrib>Zuijdwijk, Paul</creatorcontrib><creatorcontrib>Harms, Amy</creatorcontrib><creatorcontrib>Carvalho de Souza, Adriana</creatorcontrib><creatorcontrib>Hankemeier, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wouters, Bert</au><au>Miggiels, Paul</au><au>Bezemer, Roland</au><au>van der Cruijsen, Elwin A.W.</au><au>van Leeuwen, Erik</au><au>Gauvin, John</au><au>Houben, Klaartje</au><au>Babu Sai Sankar Gupta, Karthick</au><au>Zuijdwijk, Paul</au><au>Harms, Amy</au><au>Carvalho de Souza, Adriana</au><au>Hankemeier, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-11-08</date><risdate>2022</risdate><volume>94</volume><issue>44</issue><spage>15350</spage><epage>15358</epage><pages>15350-15358</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>High-throughput analysis in fields such as industrial biotechnology, combinatorial chemistry, and life sciences is becoming increasingly important. Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique providing exhaustive molecular information on complex samples. Flow NMR in particular is a cost- and time-efficient method for large screenings. In this study, we have developed a novel 3.0 mm inner diameter polychlorotrifluoroethylene (PCTFE) flow cell for a segmented-flow analysis (SFA) – NMR automated platform. The platform uses FC-72 fluorinated oil and fluoropolymer components to achieve a fully fluorinated flow path. Samples were repeatably transferred from 96-deepwell plates to the flow cell by displacing a fixed volume of oil, with a transfer time of 42 s. 1H spectra were acquired fully automated with 500 and 600 MHz NMR spectrometers. The spectral performance of the novel PCTFE cell was equal to that of commercial glass cells. Peak area repeatability was excellent with a relative standard deviation of 0.1–0.5% for standard samples, and carryover was below 0.2% without intermediate washing. The sample temperature was conditioned by using a thermostated transfer line in order to reduce the equilibration time in the probe and increase the throughput. Finally, analysis of urine samples demonstrated the applicability of this platform for screening complex matrices.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>36302160</pmid><doi>10.1021/acs.analchem.2c03038</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7362-3987</orcidid><orcidid>https://orcid.org/0000-0002-3528-2912</orcidid><orcidid>https://orcid.org/0000-0002-2931-4295</orcidid><orcidid>https://orcid.org/0000-0001-7871-2073</orcidid><orcidid>https://orcid.org/0000-0001-8714-3968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-11, Vol.94 (44), p.15350-15358
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9647699
source American Chemical Society Journals
subjects Automation
Biotechnology
Chemistry
Combinatorial analysis
Combinatorial chemistry
Fluorination
Fluoropolymers
High-throughput screening
NMR
NMR spectroscopy
Nuclear magnetic resonance
Polychlorotrifluoroethylenes
Screening
Spectrometers
Spectroscopy
Transfer lines
title Automated Segmented-Flow Analysis – NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Segmented-Flow%20Analysis%20%E2%80%93%20NMR%20with%20a%20Novel%20Fluoropolymer%20Flow%20Cell%20for%20High-Throughput%20Screening&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wouters,%20Bert&rft.date=2022-11-08&rft.volume=94&rft.issue=44&rft.spage=15350&rft.epage=15358&rft.pages=15350-15358&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c03038&rft_dat=%3Cproquest_pubme%3E2730315882%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735558679&rft_id=info:pmid/36302160&rfr_iscdi=true