A bi-level multi-follower optimization model for R&D project portfolio: an application to a pharmaceutical holding company

The need for a study of project portfolio optimization in pharmaceutical R&D has become all the more urgent with the outbreak of COVID-19. This study examines a new model for optimizing R&D project portfolios under a decentralized decision-making structure in a pharmaceutical holding company...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2023-04, Vol.323 (1-2), p.331-360
Hauptverfasser: Salehi, Faraz, Mirzapour Al-E-Hashem, S. Mohammad J., Moattar Husseini, S. Mohammad, Ghodsypour, S. Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 1-2
container_start_page 331
container_title Annals of operations research
container_volume 323
creator Salehi, Faraz
Mirzapour Al-E-Hashem, S. Mohammad J.
Moattar Husseini, S. Mohammad
Ghodsypour, S. Hassan
description The need for a study of project portfolio optimization in pharmaceutical R&D has become all the more urgent with the outbreak of COVID-19. This study examines a new model for optimizing R&D project portfolios under a decentralized decision-making structure in a pharmaceutical holding company. Specifically, two levels of decision makers hierarchically decide on budget allocation and project portfolio selection-scheduling to maximize their profit, and we formulate the problem as a bi-level multi-follower mixed-integer optimization model. At the upper level, the investment company has complete knowledge of the subsidiaries' response, acts first, and decides on the best budget allocation. At the lower level, each subsidiary responds to the allocated budget and decides on its portfolio scheduling. Since the lower level represents several mixed-integer programming problems, solving the resulting bi-level model is challenging. Therefore, we propose an efficient hybrid solution approach based on parametric optimization and convert the bi-level model into a single-level mixed-integer model. To validate it, we solve a case and discuss the optimal strategy of each actor. The experimental results show that the planned project portfolio for each subsidiary of the holding company is drastically affected by the allocated budget and its decisions.
doi_str_mv 10.1007/s10479-022-05052-0
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744228251</galeid><sourcerecordid>A744228251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-b6e3ad6b25fd893f022f98bf5d1ec577f07d55db6b2bf7c8f18d69a0e9ca0ad03</originalsourceid><addsrcrecordid>eNp9kl2L1DAUhoso7jj6B7yQgCAKdk2apG28EIb1Y4UBQfQ6pGnSyZAm3aQd2f31pnbd3VlEAidw8pz3JG9Olj1H8BRBWL2LCJKK5bAockghTfFBtkK0KnKGcf0wW8GCkpxiDE-yJzHuIYQI1fRxdoJLAitGyCq72oDG5FYdlAX9ZEeTa2-t_6UC8MNoenMlRuMd6H2bCO0D-P7qIxiC3ys5gsGHMfHGvwfCATEM1siFHz0QYNiJ0AuppjGlLdh52xrXAen7QbjLp9kjLWxUz673dfbz86cfZ-f59tuXr2ebbS5LVIx5Uyos2rIpqG5rhnV6rmZ1o2mLlKRVpWHVUto2iWh0JWuN6rZkAiomBRQtxOvsw6I7TE2vWqncGITlQzC9CJfcC8OPT5zZ8c4fOCsJZsnKdfZmEdjdKzvfbPmcgwRSRkt0QIl9fd0s-ItJxZH3JkplrXDKT5EXFa4JS781y768h-79FFyyIlEstS7LmtxSnbCKG6d9uqOcRfmmIqQo6oLObU__QaXVqt5I75Q2KX9U8PZOQTNF41RMIZpuN8ZOTDEe48WCy-BjDErf-IAgn4eRL8PI0-_wP8PIZ-Nf3DX-puTv9CUAL0BMR65T4daB_8j-Bo4u6oo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2794396684</pqid></control><display><type>article</type><title>A bi-level multi-follower optimization model for R&amp;D project portfolio: an application to a pharmaceutical holding company</title><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Salehi, Faraz ; Mirzapour Al-E-Hashem, S. Mohammad J. ; Moattar Husseini, S. Mohammad ; Ghodsypour, S. Hassan</creator><creatorcontrib>Salehi, Faraz ; Mirzapour Al-E-Hashem, S. Mohammad J. ; Moattar Husseini, S. Mohammad ; Ghodsypour, S. Hassan</creatorcontrib><description>The need for a study of project portfolio optimization in pharmaceutical R&amp;D has become all the more urgent with the outbreak of COVID-19. This study examines a new model for optimizing R&amp;D project portfolios under a decentralized decision-making structure in a pharmaceutical holding company. Specifically, two levels of decision makers hierarchically decide on budget allocation and project portfolio selection-scheduling to maximize their profit, and we formulate the problem as a bi-level multi-follower mixed-integer optimization model. At the upper level, the investment company has complete knowledge of the subsidiaries' response, acts first, and decides on the best budget allocation. At the lower level, each subsidiary responds to the allocated budget and decides on its portfolio scheduling. Since the lower level represents several mixed-integer programming problems, solving the resulting bi-level model is challenging. Therefore, we propose an efficient hybrid solution approach based on parametric optimization and convert the bi-level model into a single-level mixed-integer model. To validate it, we solve a case and discuss the optimal strategy of each actor. The experimental results show that the planned project portfolio for each subsidiary of the holding company is drastically affected by the allocated budget and its decisions.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-022-05052-0</identifier><identifier>PMID: 36407944</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Budgets ; Business and Management ; Combinatorics ; Company structure ; Computer Science ; Decision making ; Industrial project management ; Industrial research ; Integer programming ; Investments ; Iran ; Life Sciences ; Management ; Mathematical optimization ; Mixed integer ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Optimization models ; Pharmaceutical sciences ; Pharmaceuticals ; Project management ; R&amp;D ; Research &amp; development ; Scheduling ; Special: OR in Medicine/Ed. Lee ; Subsidiaries ; Theory of Computation</subject><ispartof>Annals of operations research, 2023-04, Vol.323 (1-2), p.331-360</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-b6e3ad6b25fd893f022f98bf5d1ec577f07d55db6b2bf7c8f18d69a0e9ca0ad03</citedby><cites>FETCH-LOGICAL-c612t-b6e3ad6b25fd893f022f98bf5d1ec577f07d55db6b2bf7c8f18d69a0e9ca0ad03</cites><orcidid>0000-0002-3235-2698</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-022-05052-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-022-05052-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36407944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://rennes-sb.hal.science/hal-04059561$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Salehi, Faraz</creatorcontrib><creatorcontrib>Mirzapour Al-E-Hashem, S. Mohammad J.</creatorcontrib><creatorcontrib>Moattar Husseini, S. Mohammad</creatorcontrib><creatorcontrib>Ghodsypour, S. Hassan</creatorcontrib><title>A bi-level multi-follower optimization model for R&amp;D project portfolio: an application to a pharmaceutical holding company</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><addtitle>Ann Oper Res</addtitle><description>The need for a study of project portfolio optimization in pharmaceutical R&amp;D has become all the more urgent with the outbreak of COVID-19. This study examines a new model for optimizing R&amp;D project portfolios under a decentralized decision-making structure in a pharmaceutical holding company. Specifically, two levels of decision makers hierarchically decide on budget allocation and project portfolio selection-scheduling to maximize their profit, and we formulate the problem as a bi-level multi-follower mixed-integer optimization model. At the upper level, the investment company has complete knowledge of the subsidiaries' response, acts first, and decides on the best budget allocation. At the lower level, each subsidiary responds to the allocated budget and decides on its portfolio scheduling. Since the lower level represents several mixed-integer programming problems, solving the resulting bi-level model is challenging. Therefore, we propose an efficient hybrid solution approach based on parametric optimization and convert the bi-level model into a single-level mixed-integer model. To validate it, we solve a case and discuss the optimal strategy of each actor. The experimental results show that the planned project portfolio for each subsidiary of the holding company is drastically affected by the allocated budget and its decisions.</description><subject>Analysis</subject><subject>Budgets</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Company structure</subject><subject>Computer Science</subject><subject>Decision making</subject><subject>Industrial project management</subject><subject>Industrial research</subject><subject>Integer programming</subject><subject>Investments</subject><subject>Iran</subject><subject>Life Sciences</subject><subject>Management</subject><subject>Mathematical optimization</subject><subject>Mixed integer</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Pharmaceutical sciences</subject><subject>Pharmaceuticals</subject><subject>Project management</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Scheduling</subject><subject>Special: OR in Medicine/Ed. Lee</subject><subject>Subsidiaries</subject><subject>Theory of Computation</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kl2L1DAUhoso7jj6B7yQgCAKdk2apG28EIb1Y4UBQfQ6pGnSyZAm3aQd2f31pnbd3VlEAidw8pz3JG9Olj1H8BRBWL2LCJKK5bAockghTfFBtkK0KnKGcf0wW8GCkpxiDE-yJzHuIYQI1fRxdoJLAitGyCq72oDG5FYdlAX9ZEeTa2-t_6UC8MNoenMlRuMd6H2bCO0D-P7qIxiC3ys5gsGHMfHGvwfCATEM1siFHz0QYNiJ0AuppjGlLdh52xrXAen7QbjLp9kjLWxUz673dfbz86cfZ-f59tuXr2ebbS5LVIx5Uyos2rIpqG5rhnV6rmZ1o2mLlKRVpWHVUto2iWh0JWuN6rZkAiomBRQtxOvsw6I7TE2vWqncGITlQzC9CJfcC8OPT5zZ8c4fOCsJZsnKdfZmEdjdKzvfbPmcgwRSRkt0QIl9fd0s-ItJxZH3JkplrXDKT5EXFa4JS781y768h-79FFyyIlEstS7LmtxSnbCKG6d9uqOcRfmmIqQo6oLObU__QaXVqt5I75Q2KX9U8PZOQTNF41RMIZpuN8ZOTDEe48WCy-BjDErf-IAgn4eRL8PI0-_wP8PIZ-Nf3DX-puTv9CUAL0BMR65T4daB_8j-Bo4u6oo</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Salehi, Faraz</creator><creator>Mirzapour Al-E-Hashem, S. Mohammad J.</creator><creator>Moattar Husseini, S. Mohammad</creator><creator>Ghodsypour, S. Hassan</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3235-2698</orcidid></search><sort><creationdate>20230401</creationdate><title>A bi-level multi-follower optimization model for R&amp;D project portfolio: an application to a pharmaceutical holding company</title><author>Salehi, Faraz ; Mirzapour Al-E-Hashem, S. Mohammad J. ; Moattar Husseini, S. Mohammad ; Ghodsypour, S. Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-b6e3ad6b25fd893f022f98bf5d1ec577f07d55db6b2bf7c8f18d69a0e9ca0ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Budgets</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Company structure</topic><topic>Computer Science</topic><topic>Decision making</topic><topic>Industrial project management</topic><topic>Industrial research</topic><topic>Integer programming</topic><topic>Investments</topic><topic>Iran</topic><topic>Life Sciences</topic><topic>Management</topic><topic>Mathematical optimization</topic><topic>Mixed integer</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Pharmaceutical sciences</topic><topic>Pharmaceuticals</topic><topic>Project management</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Scheduling</topic><topic>Special: OR in Medicine/Ed. Lee</topic><topic>Subsidiaries</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salehi, Faraz</creatorcontrib><creatorcontrib>Mirzapour Al-E-Hashem, S. Mohammad J.</creatorcontrib><creatorcontrib>Moattar Husseini, S. Mohammad</creatorcontrib><creatorcontrib>Ghodsypour, S. Hassan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salehi, Faraz</au><au>Mirzapour Al-E-Hashem, S. Mohammad J.</au><au>Moattar Husseini, S. Mohammad</au><au>Ghodsypour, S. Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bi-level multi-follower optimization model for R&amp;D project portfolio: an application to a pharmaceutical holding company</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><addtitle>Ann Oper Res</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>323</volume><issue>1-2</issue><spage>331</spage><epage>360</epage><pages>331-360</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The need for a study of project portfolio optimization in pharmaceutical R&amp;D has become all the more urgent with the outbreak of COVID-19. This study examines a new model for optimizing R&amp;D project portfolios under a decentralized decision-making structure in a pharmaceutical holding company. Specifically, two levels of decision makers hierarchically decide on budget allocation and project portfolio selection-scheduling to maximize their profit, and we formulate the problem as a bi-level multi-follower mixed-integer optimization model. At the upper level, the investment company has complete knowledge of the subsidiaries' response, acts first, and decides on the best budget allocation. At the lower level, each subsidiary responds to the allocated budget and decides on its portfolio scheduling. Since the lower level represents several mixed-integer programming problems, solving the resulting bi-level model is challenging. Therefore, we propose an efficient hybrid solution approach based on parametric optimization and convert the bi-level model into a single-level mixed-integer model. To validate it, we solve a case and discuss the optimal strategy of each actor. The experimental results show that the planned project portfolio for each subsidiary of the holding company is drastically affected by the allocated budget and its decisions.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36407944</pmid><doi>10.1007/s10479-022-05052-0</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-3235-2698</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2023-04, Vol.323 (1-2), p.331-360
issn 0254-5330
1572-9338
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643993
source SpringerLink Journals; EBSCOhost Business Source Complete
subjects Analysis
Budgets
Business and Management
Combinatorics
Company structure
Computer Science
Decision making
Industrial project management
Industrial research
Integer programming
Investments
Iran
Life Sciences
Management
Mathematical optimization
Mixed integer
Operations Research
Operations Research/Decision Theory
Optimization
Optimization models
Pharmaceutical sciences
Pharmaceuticals
Project management
R&D
Research & development
Scheduling
Special: OR in Medicine/Ed. Lee
Subsidiaries
Theory of Computation
title A bi-level multi-follower optimization model for R&D project portfolio: an application to a pharmaceutical holding company
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A12%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bi-level%20multi-follower%20optimization%20model%20for%20R&D%20project%20portfolio:%20an%20application%20to%20a%20pharmaceutical%20holding%20company&rft.jtitle=Annals%20of%20operations%20research&rft.au=Salehi,%20Faraz&rft.date=2023-04-01&rft.volume=323&rft.issue=1-2&rft.spage=331&rft.epage=360&rft.pages=331-360&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-022-05052-0&rft_dat=%3Cgale_pubme%3EA744228251%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2794396684&rft_id=info:pmid/36407944&rft_galeid=A744228251&rfr_iscdi=true