The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda

Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology 2019-01, Vol.28 (1), p.66-85
Hauptverfasser: Saarman, Norah P., Opiro, Robert, Hyseni, Chaz, Echodu, Richard, Opiyo, Elizabeth A., Dion, Kirstin, Johnson, Thomas, Aksoy, Serap, Caccone, Adalgisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 1
container_start_page 66
container_title Molecular ecology
container_volume 28
creator Saarman, Norah P.
Opiro, Robert
Hyseni, Chaz
Echodu, Richard
Opiyo, Elizabeth A.
Dion, Kirstin
Johnson, Thomas
Aksoy, Serap
Caccone, Adalgisa
description Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.
doi_str_mv 10.1111/mec.14957
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9642080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137470098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-7bf92bdcd2d1d20a0a33d734a39f136b7d740769867f68db88a5bd79ecbcdfc53</originalsourceid><addsrcrecordid>eNp1kUFrFDEUx4Modq0e_AIS8NIepk0mmcnkIpSltkKLlxa8hUzysk3JJONkRl0_vbFbFxUaAnnwfvx4L3-E3lJyQss5HcCcUC4b8QytKGubqpb8y3O0IrKtK0o6doBe5XxPCGV107xEB4xwQWnTrRDc3AEe07gEPfsU8QZiGrzJODk8LGH2YwA8ZygXu7DFRxch5eyjxm7Jxo-Q98Ux1nbwP-ZlAvwzxdLxEd9udLT6NXrhdMjw5vE9RLcfz2_Wl9XV54tP67OrynDORCV6J-veGltbamuiiWbMCsY1k67s1QsrOBGt7Frh2s72Xaeb3goJpjfWmYYdog8777j0A1gDcZ50UOPkBz1tVdJe_duJ_k5t0jclW16TjhTB0aNgSl8XyLMafDYQgo6QlqxqygQXhMiuoO__Q-_TMsWyXqFaKYpP0kId7ygzlX-bwO2HoUT9Dk-V8NRDeIV99_f0e_JPWgU43QHffYDt0yZ1fb7eKX8BMX2l2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169720891</pqid></control><display><type>article</type><title>The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Saarman, Norah P. ; Opiro, Robert ; Hyseni, Chaz ; Echodu, Richard ; Opiyo, Elizabeth A. ; Dion, Kirstin ; Johnson, Thomas ; Aksoy, Serap ; Caccone, Adalgisa</creator><creatorcontrib>Saarman, Norah P. ; Opiro, Robert ; Hyseni, Chaz ; Echodu, Richard ; Opiyo, Elizabeth A. ; Dion, Kirstin ; Johnson, Thomas ; Aksoy, Serap ; Caccone, Adalgisa</creatorcontrib><description>Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.</description><identifier>ISSN: 0962-1083</identifier><identifier>ISSN: 1365-294X</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.14957</identifier><identifier>PMID: 30471158</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Admixtures ; African rift system ; Animals ; Bayes Theorem ; Bayesian analysis ; Biological evolution ; Cytochrome ; Cytochrome oxidase I ; Cytochromes ; ddRAD ; Deoxyribonucleic acid ; Divergence ; DNA ; DNA, Mitochondrial - genetics ; Genetic analysis ; Genetic markers ; Genetic Speciation ; Genome, Insect - genetics ; Genomics ; Glossina fuscipes fuscipes ; Haplotypes - genetics ; Hybrid zones ; hybridization ; Hybridization, Genetic ; Maternal inheritance ; Metagenomics ; Microsatellite Repeats - genetics ; Microsatellites ; Mitochondria ; population genomics ; River networks ; Rivers ; Single-nucleotide polymorphism ; Speciation ; trypanosomiasis ; Tsetse Flies - genetics ; Tsetse Flies - pathogenicity ; Uganda - epidemiology ; vector</subject><ispartof>Molecular ecology, 2019-01, Vol.28 (1), p.66-85</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-7bf92bdcd2d1d20a0a33d734a39f136b7d740769867f68db88a5bd79ecbcdfc53</citedby><cites>FETCH-LOGICAL-c4437-7bf92bdcd2d1d20a0a33d734a39f136b7d740769867f68db88a5bd79ecbcdfc53</cites><orcidid>0000-0003-2567-8013 ; 0000-0001-8974-0301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.14957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.14957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30471158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saarman, Norah P.</creatorcontrib><creatorcontrib>Opiro, Robert</creatorcontrib><creatorcontrib>Hyseni, Chaz</creatorcontrib><creatorcontrib>Echodu, Richard</creatorcontrib><creatorcontrib>Opiyo, Elizabeth A.</creatorcontrib><creatorcontrib>Dion, Kirstin</creatorcontrib><creatorcontrib>Johnson, Thomas</creatorcontrib><creatorcontrib>Aksoy, Serap</creatorcontrib><creatorcontrib>Caccone, Adalgisa</creatorcontrib><title>The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.</description><subject>Admixtures</subject><subject>African rift system</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biological evolution</subject><subject>Cytochrome</subject><subject>Cytochrome oxidase I</subject><subject>Cytochromes</subject><subject>ddRAD</subject><subject>Deoxyribonucleic acid</subject><subject>Divergence</subject><subject>DNA</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Genetic analysis</subject><subject>Genetic markers</subject><subject>Genetic Speciation</subject><subject>Genome, Insect - genetics</subject><subject>Genomics</subject><subject>Glossina fuscipes fuscipes</subject><subject>Haplotypes - genetics</subject><subject>Hybrid zones</subject><subject>hybridization</subject><subject>Hybridization, Genetic</subject><subject>Maternal inheritance</subject><subject>Metagenomics</subject><subject>Microsatellite Repeats - genetics</subject><subject>Microsatellites</subject><subject>Mitochondria</subject><subject>population genomics</subject><subject>River networks</subject><subject>Rivers</subject><subject>Single-nucleotide polymorphism</subject><subject>Speciation</subject><subject>trypanosomiasis</subject><subject>Tsetse Flies - genetics</subject><subject>Tsetse Flies - pathogenicity</subject><subject>Uganda - epidemiology</subject><subject>vector</subject><issn>0962-1083</issn><issn>1365-294X</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFrFDEUx4Modq0e_AIS8NIepk0mmcnkIpSltkKLlxa8hUzysk3JJONkRl0_vbFbFxUaAnnwfvx4L3-E3lJyQss5HcCcUC4b8QytKGubqpb8y3O0IrKtK0o6doBe5XxPCGV107xEB4xwQWnTrRDc3AEe07gEPfsU8QZiGrzJODk8LGH2YwA8ZygXu7DFRxch5eyjxm7Jxo-Q98Ux1nbwP-ZlAvwzxdLxEd9udLT6NXrhdMjw5vE9RLcfz2_Wl9XV54tP67OrynDORCV6J-veGltbamuiiWbMCsY1k67s1QsrOBGt7Frh2s72Xaeb3goJpjfWmYYdog8777j0A1gDcZ50UOPkBz1tVdJe_duJ_k5t0jclW16TjhTB0aNgSl8XyLMafDYQgo6QlqxqygQXhMiuoO__Q-_TMsWyXqFaKYpP0kId7ygzlX-bwO2HoUT9Dk-V8NRDeIV99_f0e_JPWgU43QHffYDt0yZ1fb7eKX8BMX2l2A</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Saarman, Norah P.</creator><creator>Opiro, Robert</creator><creator>Hyseni, Chaz</creator><creator>Echodu, Richard</creator><creator>Opiyo, Elizabeth A.</creator><creator>Dion, Kirstin</creator><creator>Johnson, Thomas</creator><creator>Aksoy, Serap</creator><creator>Caccone, Adalgisa</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2567-8013</orcidid><orcidid>https://orcid.org/0000-0001-8974-0301</orcidid></search><sort><creationdate>201901</creationdate><title>The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda</title><author>Saarman, Norah P. ; Opiro, Robert ; Hyseni, Chaz ; Echodu, Richard ; Opiyo, Elizabeth A. ; Dion, Kirstin ; Johnson, Thomas ; Aksoy, Serap ; Caccone, Adalgisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-7bf92bdcd2d1d20a0a33d734a39f136b7d740769867f68db88a5bd79ecbcdfc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Admixtures</topic><topic>African rift system</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biological evolution</topic><topic>Cytochrome</topic><topic>Cytochrome oxidase I</topic><topic>Cytochromes</topic><topic>ddRAD</topic><topic>Deoxyribonucleic acid</topic><topic>Divergence</topic><topic>DNA</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Genetic analysis</topic><topic>Genetic markers</topic><topic>Genetic Speciation</topic><topic>Genome, Insect - genetics</topic><topic>Genomics</topic><topic>Glossina fuscipes fuscipes</topic><topic>Haplotypes - genetics</topic><topic>Hybrid zones</topic><topic>hybridization</topic><topic>Hybridization, Genetic</topic><topic>Maternal inheritance</topic><topic>Metagenomics</topic><topic>Microsatellite Repeats - genetics</topic><topic>Microsatellites</topic><topic>Mitochondria</topic><topic>population genomics</topic><topic>River networks</topic><topic>Rivers</topic><topic>Single-nucleotide polymorphism</topic><topic>Speciation</topic><topic>trypanosomiasis</topic><topic>Tsetse Flies - genetics</topic><topic>Tsetse Flies - pathogenicity</topic><topic>Uganda - epidemiology</topic><topic>vector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saarman, Norah P.</creatorcontrib><creatorcontrib>Opiro, Robert</creatorcontrib><creatorcontrib>Hyseni, Chaz</creatorcontrib><creatorcontrib>Echodu, Richard</creatorcontrib><creatorcontrib>Opiyo, Elizabeth A.</creatorcontrib><creatorcontrib>Dion, Kirstin</creatorcontrib><creatorcontrib>Johnson, Thomas</creatorcontrib><creatorcontrib>Aksoy, Serap</creatorcontrib><creatorcontrib>Caccone, Adalgisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saarman, Norah P.</au><au>Opiro, Robert</au><au>Hyseni, Chaz</au><au>Echodu, Richard</au><au>Opiyo, Elizabeth A.</au><au>Dion, Kirstin</au><au>Johnson, Thomas</au><au>Aksoy, Serap</au><au>Caccone, Adalgisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2019-01</date><risdate>2019</risdate><volume>28</volume><issue>1</issue><spage>66</spage><epage>85</epage><pages>66-85</pages><issn>0962-1083</issn><issn>1365-294X</issn><eissn>1365-294X</eissn><abstract>Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30471158</pmid><doi>10.1111/mec.14957</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2567-8013</orcidid><orcidid>https://orcid.org/0000-0001-8974-0301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2019-01, Vol.28 (1), p.66-85
issn 0962-1083
1365-294X
1365-294X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9642080
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Admixtures
African rift system
Animals
Bayes Theorem
Bayesian analysis
Biological evolution
Cytochrome
Cytochrome oxidase I
Cytochromes
ddRAD
Deoxyribonucleic acid
Divergence
DNA
DNA, Mitochondrial - genetics
Genetic analysis
Genetic markers
Genetic Speciation
Genome, Insect - genetics
Genomics
Glossina fuscipes fuscipes
Haplotypes - genetics
Hybrid zones
hybridization
Hybridization, Genetic
Maternal inheritance
Metagenomics
Microsatellite Repeats - genetics
Microsatellites
Mitochondria
population genomics
River networks
Rivers
Single-nucleotide polymorphism
Speciation
trypanosomiasis
Tsetse Flies - genetics
Tsetse Flies - pathogenicity
Uganda - epidemiology
vector
title The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20population%20genomics%20of%20multiple%20tsetse%20fly%20(Glossina%20fuscipes%20fuscipes)%20admixture%20zones%20in%20Uganda&rft.jtitle=Molecular%20ecology&rft.au=Saarman,%20Norah%20P.&rft.date=2019-01&rft.volume=28&rft.issue=1&rft.spage=66&rft.epage=85&rft.pages=66-85&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.14957&rft_dat=%3Cproquest_pubme%3E2137470098%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169720891&rft_id=info:pmid/30471158&rfr_iscdi=true