Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection

Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (44), p.1-12
Hauptverfasser: Niu, Qi, Gao, Jiafeng, Zhao, Kaifeng, Chen, Xiaofeng, Lin, Xiaolin, Huang, Chen, An, Yu, Xiao, Xiuying, Wu, Qiaoyi, Cui, Liang, Zhang, Peng, Wu, Lingling, Yang, Chaoyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 44
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Niu, Qi
Gao, Jiafeng
Zhao, Kaifeng
Chen, Xiaofeng
Lin, Xiaolin
Huang, Chen
An, Yu
Xiao, Xiuying
Wu, Qiaoyi
Cui, Liang
Zhang, Peng
Wu, Lingling
Yang, Chaoyong
description Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.
doi_str_mv 10.1073/pnas.2213236119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209024</jstor_id><sourcerecordid>27209024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</originalsourceid><addsrcrecordid>eNpVkc1rVDEUxYMo7dh23ZUScP3afL28l40gxapQ6MauQybvps2QScYkb2i3_uVmOnW0qws5v3vuIQehc0ouKBn45SaacsEY5YxLStUbtKBE0U4KRd6iBSFs6EbBxDF6X8qKEKL6kRyhYy45kZyJBfp9HWY_4Whi2qSc5oLX3ubkY4XsjAUM0SwDtOc5VF-sCdBBfDDRwoSNcz76-oSfcWOrTxG7lHGd1yl3E2S_bRg81iZCCHMwGW-heBsAT1DheeMUvXMmFDh7mSfo7vrrz6vv3c3ttx9XX246KwSvHXecGmEUjL2z0ox9L5Ugtrd0sD1w4kAyteyHyUkQfADCl44LqUY1MKec4Cfo8953My_XMFmILVbQm-zXJj_pZLx-rUT_oO_TVivJpZJjM_j0YpDTrxlK1as059gyazZwOrYWxI663FPtG0vJ4A4XKNG70vSuNP2vtLbx8f9gB_5vSw34sAdWpaZ80NnAiCJN_wOjo6Gr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731813248</pqid></control><display><type>article</type><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</creator><creatorcontrib>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</creatorcontrib><description>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2213236119</identifier><identifier>PMID: 36306324</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Binding sites ; Biological Sciences ; Biopsy ; Biosensing Techniques ; Biosensors ; Clustering ; Extracellular Vesicles - metabolism ; Humans ; Interface reactions ; Lipid bilayers ; Lipids ; Markers ; Mass transfer ; Microfluidics ; Nanopores ; Neoplasms - diagnosis ; Neoplasms - metabolism ; PD-L1 protein ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 1, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</citedby><cites>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</cites><orcidid>0000-0002-2374-5342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36306324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Qi</creatorcontrib><creatorcontrib>Gao, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Kaifeng</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xiaolin</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>An, Yu</creatorcontrib><creatorcontrib>Xiao, Xiuying</creatorcontrib><creatorcontrib>Wu, Qiaoyi</creatorcontrib><creatorcontrib>Cui, Liang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</description><subject>Affinity</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biopsy</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Clustering</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Humans</subject><subject>Interface reactions</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Markers</subject><subject>Mass transfer</subject><subject>Microfluidics</subject><subject>Nanopores</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - metabolism</subject><subject>PD-L1 protein</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1rVDEUxYMo7dh23ZUScP3afL28l40gxapQ6MauQybvps2QScYkb2i3_uVmOnW0qws5v3vuIQehc0ouKBn45SaacsEY5YxLStUbtKBE0U4KRd6iBSFs6EbBxDF6X8qKEKL6kRyhYy45kZyJBfp9HWY_4Whi2qSc5oLX3ubkY4XsjAUM0SwDtOc5VF-sCdBBfDDRwoSNcz76-oSfcWOrTxG7lHGd1yl3E2S_bRg81iZCCHMwGW-heBsAT1DheeMUvXMmFDh7mSfo7vrrz6vv3c3ttx9XX246KwSvHXecGmEUjL2z0ox9L5Ugtrd0sD1w4kAyteyHyUkQfADCl44LqUY1MKec4Cfo8953My_XMFmILVbQm-zXJj_pZLx-rUT_oO_TVivJpZJjM_j0YpDTrxlK1as059gyazZwOrYWxI663FPtG0vJ4A4XKNG70vSuNP2vtLbx8f9gB_5vSw34sAdWpaZ80NnAiCJN_wOjo6Gr</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Niu, Qi</creator><creator>Gao, Jiafeng</creator><creator>Zhao, Kaifeng</creator><creator>Chen, Xiaofeng</creator><creator>Lin, Xiaolin</creator><creator>Huang, Chen</creator><creator>An, Yu</creator><creator>Xiao, Xiuying</creator><creator>Wu, Qiaoyi</creator><creator>Cui, Liang</creator><creator>Zhang, Peng</creator><creator>Wu, Lingling</creator><creator>Yang, Chaoyong</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid></search><sort><creationdate>20221101</creationdate><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><author>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biopsy</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Clustering</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Humans</topic><topic>Interface reactions</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Markers</topic><topic>Mass transfer</topic><topic>Microfluidics</topic><topic>Nanopores</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - metabolism</topic><topic>PD-L1 protein</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Qi</creatorcontrib><creatorcontrib>Gao, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Kaifeng</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xiaolin</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>An, Yu</creatorcontrib><creatorcontrib>Xiao, Xiuying</creatorcontrib><creatorcontrib>Wu, Qiaoyi</creatorcontrib><creatorcontrib>Cui, Liang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Qi</au><au>Gao, Jiafeng</au><au>Zhao, Kaifeng</au><au>Chen, Xiaofeng</au><au>Lin, Xiaolin</au><au>Huang, Chen</au><au>An, Yu</au><au>Xiao, Xiuying</au><au>Wu, Qiaoyi</au><au>Cui, Liang</au><au>Zhang, Peng</au><au>Wu, Lingling</au><au>Yang, Chaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>119</volume><issue>44</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36306324</pmid><doi>10.1073/pnas.2213236119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636968
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Affinity
Binding sites
Biological Sciences
Biopsy
Biosensing Techniques
Biosensors
Clustering
Extracellular Vesicles - metabolism
Humans
Interface reactions
Lipid bilayers
Lipids
Markers
Mass transfer
Microfluidics
Nanopores
Neoplasms - diagnosis
Neoplasms - metabolism
PD-L1 protein
Tumors
title Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20nanoporous%20microinterface%20enables%20multiscale-enhanced%20affinity%20interaction%20for%20tumor-derived%20extracellular%20vesicle%20detection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Niu,%20Qi&rft.date=2022-11-01&rft.volume=119&rft.issue=44&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2213236119&rft_dat=%3Cjstor_pubme%3E27209024%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731813248&rft_id=info:pmid/36306324&rft_jstor_id=27209024&rfr_iscdi=true