Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection
Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (44), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 44 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Niu, Qi Gao, Jiafeng Zhao, Kaifeng Chen, Xiaofeng Lin, Xiaolin Huang, Chen An, Yu Xiao, Xiuying Wu, Qiaoyi Cui, Liang Zhang, Peng Wu, Lingling Yang, Chaoyong |
description | Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples. |
doi_str_mv | 10.1073/pnas.2213236119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209024</jstor_id><sourcerecordid>27209024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</originalsourceid><addsrcrecordid>eNpVkc1rVDEUxYMo7dh23ZUScP3afL28l40gxapQ6MauQybvps2QScYkb2i3_uVmOnW0qws5v3vuIQehc0ouKBn45SaacsEY5YxLStUbtKBE0U4KRd6iBSFs6EbBxDF6X8qKEKL6kRyhYy45kZyJBfp9HWY_4Whi2qSc5oLX3ubkY4XsjAUM0SwDtOc5VF-sCdBBfDDRwoSNcz76-oSfcWOrTxG7lHGd1yl3E2S_bRg81iZCCHMwGW-heBsAT1DheeMUvXMmFDh7mSfo7vrrz6vv3c3ttx9XX246KwSvHXecGmEUjL2z0ox9L5Ugtrd0sD1w4kAyteyHyUkQfADCl44LqUY1MKec4Cfo8953My_XMFmILVbQm-zXJj_pZLx-rUT_oO_TVivJpZJjM_j0YpDTrxlK1as059gyazZwOrYWxI663FPtG0vJ4A4XKNG70vSuNP2vtLbx8f9gB_5vSw34sAdWpaZ80NnAiCJN_wOjo6Gr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731813248</pqid></control><display><type>article</type><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</creator><creatorcontrib>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</creatorcontrib><description>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2213236119</identifier><identifier>PMID: 36306324</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Affinity ; Binding sites ; Biological Sciences ; Biopsy ; Biosensing Techniques ; Biosensors ; Clustering ; Extracellular Vesicles - metabolism ; Humans ; Interface reactions ; Lipid bilayers ; Lipids ; Markers ; Mass transfer ; Microfluidics ; Nanopores ; Neoplasms - diagnosis ; Neoplasms - metabolism ; PD-L1 protein ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 1, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</citedby><cites>FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</cites><orcidid>0000-0002-2374-5342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36306324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Qi</creatorcontrib><creatorcontrib>Gao, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Kaifeng</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xiaolin</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>An, Yu</creatorcontrib><creatorcontrib>Xiao, Xiuying</creatorcontrib><creatorcontrib>Wu, Qiaoyi</creatorcontrib><creatorcontrib>Cui, Liang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</description><subject>Affinity</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Biopsy</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Clustering</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Humans</subject><subject>Interface reactions</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Markers</subject><subject>Mass transfer</subject><subject>Microfluidics</subject><subject>Nanopores</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - metabolism</subject><subject>PD-L1 protein</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1rVDEUxYMo7dh23ZUScP3afL28l40gxapQ6MauQybvps2QScYkb2i3_uVmOnW0qws5v3vuIQehc0ouKBn45SaacsEY5YxLStUbtKBE0U4KRd6iBSFs6EbBxDF6X8qKEKL6kRyhYy45kZyJBfp9HWY_4Whi2qSc5oLX3ubkY4XsjAUM0SwDtOc5VF-sCdBBfDDRwoSNcz76-oSfcWOrTxG7lHGd1yl3E2S_bRg81iZCCHMwGW-heBsAT1DheeMUvXMmFDh7mSfo7vrrz6vv3c3ttx9XX246KwSvHXecGmEUjL2z0ox9L5Ugtrd0sD1w4kAyteyHyUkQfADCl44LqUY1MKec4Cfo8953My_XMFmILVbQm-zXJj_pZLx-rUT_oO_TVivJpZJjM_j0YpDTrxlK1as059gyazZwOrYWxI663FPtG0vJ4A4XKNG70vSuNP2vtLbx8f9gB_5vSw34sAdWpaZ80NnAiCJN_wOjo6Gr</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Niu, Qi</creator><creator>Gao, Jiafeng</creator><creator>Zhao, Kaifeng</creator><creator>Chen, Xiaofeng</creator><creator>Lin, Xiaolin</creator><creator>Huang, Chen</creator><creator>An, Yu</creator><creator>Xiao, Xiuying</creator><creator>Wu, Qiaoyi</creator><creator>Cui, Liang</creator><creator>Zhang, Peng</creator><creator>Wu, Lingling</creator><creator>Yang, Chaoyong</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid></search><sort><creationdate>20221101</creationdate><title>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</title><author>Niu, Qi ; Gao, Jiafeng ; Zhao, Kaifeng ; Chen, Xiaofeng ; Lin, Xiaolin ; Huang, Chen ; An, Yu ; Xiao, Xiuying ; Wu, Qiaoyi ; Cui, Liang ; Zhang, Peng ; Wu, Lingling ; Yang, Chaoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-3f31a4a9e85fc6a8556940c5c17c5e30fe629b57df6e437e03bf34698972f9f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Biopsy</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Clustering</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Humans</topic><topic>Interface reactions</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Markers</topic><topic>Mass transfer</topic><topic>Microfluidics</topic><topic>Nanopores</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - metabolism</topic><topic>PD-L1 protein</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Qi</creatorcontrib><creatorcontrib>Gao, Jiafeng</creatorcontrib><creatorcontrib>Zhao, Kaifeng</creatorcontrib><creatorcontrib>Chen, Xiaofeng</creatorcontrib><creatorcontrib>Lin, Xiaolin</creatorcontrib><creatorcontrib>Huang, Chen</creatorcontrib><creatorcontrib>An, Yu</creatorcontrib><creatorcontrib>Xiao, Xiuying</creatorcontrib><creatorcontrib>Wu, Qiaoyi</creatorcontrib><creatorcontrib>Cui, Liang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Wu, Lingling</creatorcontrib><creatorcontrib>Yang, Chaoyong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Qi</au><au>Gao, Jiafeng</au><au>Zhao, Kaifeng</au><au>Chen, Xiaofeng</au><au>Lin, Xiaolin</au><au>Huang, Chen</au><au>An, Yu</au><au>Xiao, Xiuying</au><au>Wu, Qiaoyi</au><au>Cui, Liang</au><au>Zhang, Peng</au><au>Wu, Lingling</au><au>Yang, Chaoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>119</volume><issue>44</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tumor-derived extracellular vesicles (T-EVs) represent valuable markers for tumor diagnosis and treatment guidance. However, nanoscale sizes and the low abundance of marker proteins of T-EVs restrict interfacial affinity reaction, leading to low isolation efficiency and detection sensitivity. Here, we engineer a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip by decorating supported lipid bilayers (SLBs) on nanoporous herringbone microstructures with a multiscale-enhanced affinity reaction for efficient isolation of T-EVs. At the microscale level, the herringbone micropattern promotes the mass transfer of T-EVs to the surface. At the nanoscale level, nanoporousity can overcome boundary effects for close contact between T-EVs and the interface. At the molecular level, fluid SLBs afford clustering of recognition molecules at the binding site, enabling multivalent binding with an ∼83-fold increase of affinity compared with the nonfluid interface. With the synergetic enhanced mass transfer, interface contact, and binding affinity, FluidporeFace affords ultrasensitive detection of T-EVs with a limit of detection of 10 T-EVs μL−1, whose PD-L1 expression levels successfully distinguish cancer patients from healthy donors. We expect this multiscale enhanced interfacial reaction strategy will inspire the biosensor design and expand liquid biopsy applications, especially for low-abundant targets in clinical samples.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36306324</pmid><doi>10.1073/pnas.2213236119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2374-5342</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-12 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636968 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Affinity Binding sites Biological Sciences Biopsy Biosensing Techniques Biosensors Clustering Extracellular Vesicles - metabolism Humans Interface reactions Lipid bilayers Lipids Markers Mass transfer Microfluidics Nanopores Neoplasms - diagnosis Neoplasms - metabolism PD-L1 protein Tumors |
title | Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20nanoporous%20microinterface%20enables%20multiscale-enhanced%20affinity%20interaction%20for%20tumor-derived%20extracellular%20vesicle%20detection&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Niu,%20Qi&rft.date=2022-11-01&rft.volume=119&rft.issue=44&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2213236119&rft_dat=%3Cjstor_pubme%3E27209024%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731813248&rft_id=info:pmid/36306324&rft_jstor_id=27209024&rfr_iscdi=true |