GABA signaling enforces intestinal germinal center B cell differentiation
Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC)...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (44), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 44 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Liao, Yuexia Fan, Lijuan Bin, Peng Zhu, Congrui Chen, Qingyi Cai, Yepeng Duan, Jielin Cai, Qian Han, Wei Ding, Shizhen Hu, Xiangyu Zhang, Yiran Yin, Yulong Ren, Wenkai |
description | Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN. |
doi_str_mv | 10.1073/pnas.2215921119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209034</jstor_id><sourcerecordid>27209034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UChbaMyeqSFy4BMYfcTyXSgsCioTEhZ4tk0wWr7Lx1s4i8d_jdOmW9uTRzM_j9_wYO-ZwzqGWF-vBpXMheIWCc457bMYBeakVwic2AxB1aZRQB-wwpSUAYGVgnx1ILWpUUszY3e38cl4kvxhc74dFQUMXYkOp8MNIafS5XSworn4XDeVmLC5z0fdF67uOYm55N_owfGGfO9cn-vp-HrGfN9ePVz_K-4fbu6v5fdkoJcfSECECIREAqSdXaSmyFNOiFFxp5zptkDd1S7ytjDMoUbRK1bzpqJbaySP2fbt3vXlaUTtpiq636-hXLr7a4Lz9dzL4Z7sILxa11AiYF5y9L4jh1yabtCufJkduoLBJVtTCKK1lXWX09D90GTYxf8VESW64lFJl6mJLNTGkFKnbieFgp5jsFJP9G1O-8e2jhx3_J5cMnGyBZRpD3M2zNEDIT74BtA-X9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731813334</pqid></control><display><type>article</type><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</creator><creatorcontrib>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</creatorcontrib><description>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2215921119</identifier><identifier>PMID: 36279432</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Butyric acid ; Cell activation ; Cell Differentiation ; Differentiation (biology) ; gamma-Aminobutyric Acid - metabolism ; Germinal Center - metabolism ; Germinal centers ; Glomerulonephritis, IGA ; Immunoglobulin A ; Immunoglobulin A - metabolism ; Intestine ; Lymphocytes B ; Mammals ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mucosal immunity ; Nephropathy ; Neurotransmitters ; Pathogenesis ; Rapamycin ; Signaling ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; γ-Aminobutyric acid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-11</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 1, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</citedby><cites>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</cites><orcidid>0000-0001-8446-5400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636909/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636909/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36279432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Yuexia</creatorcontrib><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Bin, Peng</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Chen, Qingyi</creatorcontrib><creatorcontrib>Cai, Yepeng</creatorcontrib><creatorcontrib>Duan, Jielin</creatorcontrib><creatorcontrib>Cai, Qian</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Ding, Shizhen</creatorcontrib><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yiran</creatorcontrib><creatorcontrib>Yin, Yulong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Butyric acid</subject><subject>Cell activation</subject><subject>Cell Differentiation</subject><subject>Differentiation (biology)</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Germinal Center - metabolism</subject><subject>Germinal centers</subject><subject>Glomerulonephritis, IGA</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin A - metabolism</subject><subject>Intestine</subject><subject>Lymphocytes B</subject><subject>Mammals</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mucosal immunity</subject><subject>Nephropathy</subject><subject>Neurotransmitters</subject><subject>Pathogenesis</subject><subject>Rapamycin</subject><subject>Signaling</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>γ-Aminobutyric acid</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UChbaMyeqSFy4BMYfcTyXSgsCioTEhZ4tk0wWr7Lx1s4i8d_jdOmW9uTRzM_j9_wYO-ZwzqGWF-vBpXMheIWCc457bMYBeakVwic2AxB1aZRQB-wwpSUAYGVgnx1ILWpUUszY3e38cl4kvxhc74dFQUMXYkOp8MNIafS5XSworn4XDeVmLC5z0fdF67uOYm55N_owfGGfO9cn-vp-HrGfN9ePVz_K-4fbu6v5fdkoJcfSECECIREAqSdXaSmyFNOiFFxp5zptkDd1S7ytjDMoUbRK1bzpqJbaySP2fbt3vXlaUTtpiq636-hXLr7a4Lz9dzL4Z7sILxa11AiYF5y9L4jh1yabtCufJkduoLBJVtTCKK1lXWX09D90GTYxf8VESW64lFJl6mJLNTGkFKnbieFgp5jsFJP9G1O-8e2jhx3_J5cMnGyBZRpD3M2zNEDIT74BtA-X9g</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liao, Yuexia</creator><creator>Fan, Lijuan</creator><creator>Bin, Peng</creator><creator>Zhu, Congrui</creator><creator>Chen, Qingyi</creator><creator>Cai, Yepeng</creator><creator>Duan, Jielin</creator><creator>Cai, Qian</creator><creator>Han, Wei</creator><creator>Ding, Shizhen</creator><creator>Hu, Xiangyu</creator><creator>Zhang, Yiran</creator><creator>Yin, Yulong</creator><creator>Ren, Wenkai</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8446-5400</orcidid></search><sort><creationdate>20221101</creationdate><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><author>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Butyric acid</topic><topic>Cell activation</topic><topic>Cell Differentiation</topic><topic>Differentiation (biology)</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Germinal Center - metabolism</topic><topic>Germinal centers</topic><topic>Glomerulonephritis, IGA</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin A - metabolism</topic><topic>Intestine</topic><topic>Lymphocytes B</topic><topic>Mammals</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mucosal immunity</topic><topic>Nephropathy</topic><topic>Neurotransmitters</topic><topic>Pathogenesis</topic><topic>Rapamycin</topic><topic>Signaling</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Yuexia</creatorcontrib><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Bin, Peng</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Chen, Qingyi</creatorcontrib><creatorcontrib>Cai, Yepeng</creatorcontrib><creatorcontrib>Duan, Jielin</creatorcontrib><creatorcontrib>Cai, Qian</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Ding, Shizhen</creatorcontrib><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yiran</creatorcontrib><creatorcontrib>Yin, Yulong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Yuexia</au><au>Fan, Lijuan</au><au>Bin, Peng</au><au>Zhu, Congrui</au><au>Chen, Qingyi</au><au>Cai, Yepeng</au><au>Duan, Jielin</au><au>Cai, Qian</au><au>Han, Wei</au><au>Ding, Shizhen</au><au>Hu, Xiangyu</au><au>Zhang, Yiran</au><au>Yin, Yulong</au><au>Ren, Wenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GABA signaling enforces intestinal germinal center B cell differentiation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>119</volume><issue>44</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36279432</pmid><doi>10.1073/pnas.2215921119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8446-5400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-11 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636909 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Butyric acid Cell activation Cell Differentiation Differentiation (biology) gamma-Aminobutyric Acid - metabolism Germinal Center - metabolism Germinal centers Glomerulonephritis, IGA Immunoglobulin A Immunoglobulin A - metabolism Intestine Lymphocytes B Mammals Mechanistic Target of Rapamycin Complex 1 - metabolism Mice Mucosal immunity Nephropathy Neurotransmitters Pathogenesis Rapamycin Signaling TOR protein TOR Serine-Threonine Kinases - metabolism γ-Aminobutyric acid |
title | GABA signaling enforces intestinal germinal center B cell differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GABA%20signaling%20enforces%20intestinal%20germinal%20center%20B%20cell%20differentiation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liao,%20Yuexia&rft.date=2022-11-01&rft.volume=119&rft.issue=44&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2215921119&rft_dat=%3Cjstor_pubme%3E27209034%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731813334&rft_id=info:pmid/36279432&rft_jstor_id=27209034&rfr_iscdi=true |