GABA signaling enforces intestinal germinal center B cell differentiation

Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-11, Vol.119 (44), p.1-11
Hauptverfasser: Liao, Yuexia, Fan, Lijuan, Bin, Peng, Zhu, Congrui, Chen, Qingyi, Cai, Yepeng, Duan, Jielin, Cai, Qian, Han, Wei, Ding, Shizhen, Hu, Xiangyu, Zhang, Yiran, Yin, Yulong, Ren, Wenkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 44
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Liao, Yuexia
Fan, Lijuan
Bin, Peng
Zhu, Congrui
Chen, Qingyi
Cai, Yepeng
Duan, Jielin
Cai, Qian
Han, Wei
Ding, Shizhen
Hu, Xiangyu
Zhang, Yiran
Yin, Yulong
Ren, Wenkai
description Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.
doi_str_mv 10.1073/pnas.2215921119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27209034</jstor_id><sourcerecordid>27209034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS3UChbaMyeqSFy4BMYfcTyXSgsCioTEhZ4tk0wWr7Lx1s4i8d_jdOmW9uTRzM_j9_wYO-ZwzqGWF-vBpXMheIWCc457bMYBeakVwic2AxB1aZRQB-wwpSUAYGVgnx1ILWpUUszY3e38cl4kvxhc74dFQUMXYkOp8MNIafS5XSworn4XDeVmLC5z0fdF67uOYm55N_owfGGfO9cn-vp-HrGfN9ePVz_K-4fbu6v5fdkoJcfSECECIREAqSdXaSmyFNOiFFxp5zptkDd1S7ytjDMoUbRK1bzpqJbaySP2fbt3vXlaUTtpiq636-hXLr7a4Lz9dzL4Z7sILxa11AiYF5y9L4jh1yabtCufJkduoLBJVtTCKK1lXWX09D90GTYxf8VESW64lFJl6mJLNTGkFKnbieFgp5jsFJP9G1O-8e2jhx3_J5cMnGyBZRpD3M2zNEDIT74BtA-X9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731813334</pqid></control><display><type>article</type><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</creator><creatorcontrib>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</creatorcontrib><description>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2215921119</identifier><identifier>PMID: 36279432</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Butyric acid ; Cell activation ; Cell Differentiation ; Differentiation (biology) ; gamma-Aminobutyric Acid - metabolism ; Germinal Center - metabolism ; Germinal centers ; Glomerulonephritis, IGA ; Immunoglobulin A ; Immunoglobulin A - metabolism ; Intestine ; Lymphocytes B ; Mammals ; Mechanistic Target of Rapamycin Complex 1 - metabolism ; Mice ; Mucosal immunity ; Nephropathy ; Neurotransmitters ; Pathogenesis ; Rapamycin ; Signaling ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; γ-Aminobutyric acid</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-11</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Nov 1, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</citedby><cites>FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</cites><orcidid>0000-0001-8446-5400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636909/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636909/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36279432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Yuexia</creatorcontrib><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Bin, Peng</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Chen, Qingyi</creatorcontrib><creatorcontrib>Cai, Yepeng</creatorcontrib><creatorcontrib>Duan, Jielin</creatorcontrib><creatorcontrib>Cai, Qian</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Ding, Shizhen</creatorcontrib><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yiran</creatorcontrib><creatorcontrib>Yin, Yulong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Butyric acid</subject><subject>Cell activation</subject><subject>Cell Differentiation</subject><subject>Differentiation (biology)</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Germinal Center - metabolism</subject><subject>Germinal centers</subject><subject>Glomerulonephritis, IGA</subject><subject>Immunoglobulin A</subject><subject>Immunoglobulin A - metabolism</subject><subject>Intestine</subject><subject>Lymphocytes B</subject><subject>Mammals</subject><subject>Mechanistic Target of Rapamycin Complex 1 - metabolism</subject><subject>Mice</subject><subject>Mucosal immunity</subject><subject>Nephropathy</subject><subject>Neurotransmitters</subject><subject>Pathogenesis</subject><subject>Rapamycin</subject><subject>Signaling</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>γ-Aminobutyric acid</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS3UChbaMyeqSFy4BMYfcTyXSgsCioTEhZ4tk0wWr7Lx1s4i8d_jdOmW9uTRzM_j9_wYO-ZwzqGWF-vBpXMheIWCc457bMYBeakVwic2AxB1aZRQB-wwpSUAYGVgnx1ILWpUUszY3e38cl4kvxhc74dFQUMXYkOp8MNIafS5XSworn4XDeVmLC5z0fdF67uOYm55N_owfGGfO9cn-vp-HrGfN9ePVz_K-4fbu6v5fdkoJcfSECECIREAqSdXaSmyFNOiFFxp5zptkDd1S7ytjDMoUbRK1bzpqJbaySP2fbt3vXlaUTtpiq636-hXLr7a4Lz9dzL4Z7sILxa11AiYF5y9L4jh1yabtCufJkduoLBJVtTCKK1lXWX09D90GTYxf8VESW64lFJl6mJLNTGkFKnbieFgp5jsFJP9G1O-8e2jhx3_J5cMnGyBZRpD3M2zNEDIT74BtA-X9g</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Liao, Yuexia</creator><creator>Fan, Lijuan</creator><creator>Bin, Peng</creator><creator>Zhu, Congrui</creator><creator>Chen, Qingyi</creator><creator>Cai, Yepeng</creator><creator>Duan, Jielin</creator><creator>Cai, Qian</creator><creator>Han, Wei</creator><creator>Ding, Shizhen</creator><creator>Hu, Xiangyu</creator><creator>Zhang, Yiran</creator><creator>Yin, Yulong</creator><creator>Ren, Wenkai</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8446-5400</orcidid></search><sort><creationdate>20221101</creationdate><title>GABA signaling enforces intestinal germinal center B cell differentiation</title><author>Liao, Yuexia ; Fan, Lijuan ; Bin, Peng ; Zhu, Congrui ; Chen, Qingyi ; Cai, Yepeng ; Duan, Jielin ; Cai, Qian ; Han, Wei ; Ding, Shizhen ; Hu, Xiangyu ; Zhang, Yiran ; Yin, Yulong ; Ren, Wenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8ee990e9ee00e4ba56329438d932146aaf6891c7de1d58a89392d4471cfe736a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Butyric acid</topic><topic>Cell activation</topic><topic>Cell Differentiation</topic><topic>Differentiation (biology)</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Germinal Center - metabolism</topic><topic>Germinal centers</topic><topic>Glomerulonephritis, IGA</topic><topic>Immunoglobulin A</topic><topic>Immunoglobulin A - metabolism</topic><topic>Intestine</topic><topic>Lymphocytes B</topic><topic>Mammals</topic><topic>Mechanistic Target of Rapamycin Complex 1 - metabolism</topic><topic>Mice</topic><topic>Mucosal immunity</topic><topic>Nephropathy</topic><topic>Neurotransmitters</topic><topic>Pathogenesis</topic><topic>Rapamycin</topic><topic>Signaling</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Yuexia</creatorcontrib><creatorcontrib>Fan, Lijuan</creatorcontrib><creatorcontrib>Bin, Peng</creatorcontrib><creatorcontrib>Zhu, Congrui</creatorcontrib><creatorcontrib>Chen, Qingyi</creatorcontrib><creatorcontrib>Cai, Yepeng</creatorcontrib><creatorcontrib>Duan, Jielin</creatorcontrib><creatorcontrib>Cai, Qian</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Ding, Shizhen</creatorcontrib><creatorcontrib>Hu, Xiangyu</creatorcontrib><creatorcontrib>Zhang, Yiran</creatorcontrib><creatorcontrib>Yin, Yulong</creatorcontrib><creatorcontrib>Ren, Wenkai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Yuexia</au><au>Fan, Lijuan</au><au>Bin, Peng</au><au>Zhu, Congrui</au><au>Chen, Qingyi</au><au>Cai, Yepeng</au><au>Duan, Jielin</au><au>Cai, Qian</au><au>Han, Wei</au><au>Ding, Shizhen</au><au>Hu, Xiangyu</au><au>Zhang, Yiran</au><au>Yin, Yulong</au><au>Ren, Wenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GABA signaling enforces intestinal germinal center B cell differentiation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>119</volume><issue>44</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA⁺ B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>36279432</pmid><doi>10.1073/pnas.2215921119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8446-5400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-11, Vol.119 (44), p.1-11
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9636909
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Butyric acid
Cell activation
Cell Differentiation
Differentiation (biology)
gamma-Aminobutyric Acid - metabolism
Germinal Center - metabolism
Germinal centers
Glomerulonephritis, IGA
Immunoglobulin A
Immunoglobulin A - metabolism
Intestine
Lymphocytes B
Mammals
Mechanistic Target of Rapamycin Complex 1 - metabolism
Mice
Mucosal immunity
Nephropathy
Neurotransmitters
Pathogenesis
Rapamycin
Signaling
TOR protein
TOR Serine-Threonine Kinases - metabolism
γ-Aminobutyric acid
title GABA signaling enforces intestinal germinal center B cell differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A13%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GABA%20signaling%20enforces%20intestinal%20germinal%20center%20B%20cell%20differentiation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liao,%20Yuexia&rft.date=2022-11-01&rft.volume=119&rft.issue=44&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2215921119&rft_dat=%3Cjstor_pubme%3E27209034%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731813334&rft_id=info:pmid/36279432&rft_jstor_id=27209034&rfr_iscdi=true