Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy
Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by , catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often down...
Gespeichert in:
Veröffentlicht in: | Cancer immunology research 2021-05, Vol.9 (5), p.568-582 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 5 |
container_start_page | 568 |
container_title | Cancer immunology research |
container_volume | 9 |
creator | Montfort, Anne Bertrand, Florie Rochotte, Julia Gilhodes, Julia Filleron, Thomas Milhès, Jean Dufau, Carine Imbert, Caroline Riond, Joëlle Tosolini, Marie Clarke, Christopher J Dufour, Florent Constantinescu, Andrei A Junior, Nilton De França Garcia, Virginie Record, Michel Cordelier, Pierre Brousset, Pierre Rochaix, Philippe Silvente-Poirot, Sandrine Therville, Nicole Andrieu-Abadie, Nathalie Levade, Thierry Hannun, Yusuf A Benoist, Hervé Meyer, Nicolas Micheau, Olivier Colacios, Céline Ségui, Bruno |
description | Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by
, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8
tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity.
, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing
expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8
T-cell-dependent immune responses and overcome resistance to anti-PD-1. |
doi_str_mv | 10.1158/2326-6066.CIR-20-0342 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9631340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2502208236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-c6f2ce73c3b4511e377549dd3c492aa29a6fd59ca8db1e5a67bd679e886e0ae83</originalsourceid><addsrcrecordid>eNpdUV1P3DAQtKqigoCf0MqPPDTg7yQvSKeDciddWwT02XKczcVV4qRxgnT_vo7uONHui1frmVnNDkKfKbmmVGY3jDOVKKLU9XL9lDCSEC7YB3R2mKfi47FX6hRdhvCbxMoyQaX4hE45T1nKhDpDxQ-YxsE0-Lmvnd927Q4a500AzPAK3LYewQe88KNLvkNjfNcavG7byQN-gtB3PkDAxpd7yONdQvFLDYPpd_i-qpw1dneBTirTBLg8vOfo17f7l-Uq2fx8WC8Xm8RKpcbEqopZSLnlhZCUAk9TKfKy5FbkzBiWG1WVMrcmKwsK0qi0KFWaQ5YpIAYyfo5u97r9VLRQWvCzMd0PrjXDTnfG6X9_vKv1tnvVueKUCxIFvu4F6v9oq8VGu-h0aHU8NGFMylca4VeHfUP3Z4Iw6tYFC028EnRT0ExGJMkYVxEq91A7dCEMUB3lKdFzonpOS89p6ZioZmRexCLvy3tLR9Zbfvwv45ydAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502208236</pqid></control><display><type>article</type><title>Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>American Association for Cancer Research</source><creator>Montfort, Anne ; Bertrand, Florie ; Rochotte, Julia ; Gilhodes, Julia ; Filleron, Thomas ; Milhès, Jean ; Dufau, Carine ; Imbert, Caroline ; Riond, Joëlle ; Tosolini, Marie ; Clarke, Christopher J ; Dufour, Florent ; Constantinescu, Andrei A ; Junior, Nilton De França ; Garcia, Virginie ; Record, Michel ; Cordelier, Pierre ; Brousset, Pierre ; Rochaix, Philippe ; Silvente-Poirot, Sandrine ; Therville, Nicole ; Andrieu-Abadie, Nathalie ; Levade, Thierry ; Hannun, Yusuf A ; Benoist, Hervé ; Meyer, Nicolas ; Micheau, Olivier ; Colacios, Céline ; Ségui, Bruno</creator><creatorcontrib>Montfort, Anne ; Bertrand, Florie ; Rochotte, Julia ; Gilhodes, Julia ; Filleron, Thomas ; Milhès, Jean ; Dufau, Carine ; Imbert, Caroline ; Riond, Joëlle ; Tosolini, Marie ; Clarke, Christopher J ; Dufour, Florent ; Constantinescu, Andrei A ; Junior, Nilton De França ; Garcia, Virginie ; Record, Michel ; Cordelier, Pierre ; Brousset, Pierre ; Rochaix, Philippe ; Silvente-Poirot, Sandrine ; Therville, Nicole ; Andrieu-Abadie, Nathalie ; Levade, Thierry ; Hannun, Yusuf A ; Benoist, Hervé ; Meyer, Nicolas ; Micheau, Olivier ; Colacios, Céline ; Ségui, Bruno</creatorcontrib><description>Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by
, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8
tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity.
, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing
expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8
T-cell-dependent immune responses and overcome resistance to anti-PD-1.</description><identifier>ISSN: 2326-6066</identifier><identifier>EISSN: 2326-6074</identifier><identifier>DOI: 10.1158/2326-6066.CIR-20-0342</identifier><identifier>PMID: 33727246</identifier><language>eng</language><publisher>United States: American Association for Cancer Research</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; CD8-Positive T-Lymphocytes - immunology ; Cell Line, Tumor ; Female ; Humans ; Immunity ; Immunotherapy ; Life Sciences ; Melanoma - drug therapy ; Melanoma - immunology ; Melanoma - metabolism ; Melanoma - pathology ; Mice ; Mice, Inbred C57BL ; Programmed Cell Death 1 Receptor - antagonists & inhibitors ; Sphingomyelin Phosphodiesterase - genetics ; Sphingomyelin Phosphodiesterase - metabolism ; Th1 Cells - immunology</subject><ispartof>Cancer immunology research, 2021-05, Vol.9 (5), p.568-582</ispartof><rights>2021 American Association for Cancer Research.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-c6f2ce73c3b4511e377549dd3c492aa29a6fd59ca8db1e5a67bd679e886e0ae83</citedby><cites>FETCH-LOGICAL-c566t-c6f2ce73c3b4511e377549dd3c492aa29a6fd59ca8db1e5a67bd679e886e0ae83</cites><orcidid>0000-0002-8629-3291 ; 0000-0002-7068-1361 ; 0000-0003-0724-0659 ; 0000-0003-2698-1970 ; 0000-0003-2142-2619 ; 0000-0003-3349-3369 ; 0000-0001-5278-5952 ; 0000-0003-2245-9069 ; 0000-0001-8499-7984 ; 0000-0003-2096-7967 ; 0000-0002-4855-522X ; 0000-0002-6281-2376 ; 0000-0001-6238-1599 ; 0000-0002-7509-0675 ; 0000-0002-2926-4902 ; 0000-0001-6729-6852 ; 0000-0003-2671-5576 ; 0000-0003-1893-0022 ; 0000-0002-6119-1889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3342,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33727246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-03402255$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Montfort, Anne</creatorcontrib><creatorcontrib>Bertrand, Florie</creatorcontrib><creatorcontrib>Rochotte, Julia</creatorcontrib><creatorcontrib>Gilhodes, Julia</creatorcontrib><creatorcontrib>Filleron, Thomas</creatorcontrib><creatorcontrib>Milhès, Jean</creatorcontrib><creatorcontrib>Dufau, Carine</creatorcontrib><creatorcontrib>Imbert, Caroline</creatorcontrib><creatorcontrib>Riond, Joëlle</creatorcontrib><creatorcontrib>Tosolini, Marie</creatorcontrib><creatorcontrib>Clarke, Christopher J</creatorcontrib><creatorcontrib>Dufour, Florent</creatorcontrib><creatorcontrib>Constantinescu, Andrei A</creatorcontrib><creatorcontrib>Junior, Nilton De França</creatorcontrib><creatorcontrib>Garcia, Virginie</creatorcontrib><creatorcontrib>Record, Michel</creatorcontrib><creatorcontrib>Cordelier, Pierre</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Rochaix, Philippe</creatorcontrib><creatorcontrib>Silvente-Poirot, Sandrine</creatorcontrib><creatorcontrib>Therville, Nicole</creatorcontrib><creatorcontrib>Andrieu-Abadie, Nathalie</creatorcontrib><creatorcontrib>Levade, Thierry</creatorcontrib><creatorcontrib>Hannun, Yusuf A</creatorcontrib><creatorcontrib>Benoist, Hervé</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Micheau, Olivier</creatorcontrib><creatorcontrib>Colacios, Céline</creatorcontrib><creatorcontrib>Ségui, Bruno</creatorcontrib><title>Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy</title><title>Cancer immunology research</title><addtitle>Cancer Immunol Res</addtitle><description>Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by
, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8
tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity.
, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing
expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8
T-cell-dependent immune responses and overcome resistance to anti-PD-1.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell Line, Tumor</subject><subject>Female</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Life Sciences</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - immunology</subject><subject>Melanoma - metabolism</subject><subject>Melanoma - pathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Programmed Cell Death 1 Receptor - antagonists & inhibitors</subject><subject>Sphingomyelin Phosphodiesterase - genetics</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>Th1 Cells - immunology</subject><issn>2326-6066</issn><issn>2326-6074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUV1P3DAQtKqigoCf0MqPPDTg7yQvSKeDciddWwT02XKczcVV4qRxgnT_vo7uONHui1frmVnNDkKfKbmmVGY3jDOVKKLU9XL9lDCSEC7YB3R2mKfi47FX6hRdhvCbxMoyQaX4hE45T1nKhDpDxQ-YxsE0-Lmvnd927Q4a500AzPAK3LYewQe88KNLvkNjfNcavG7byQN-gtB3PkDAxpd7yONdQvFLDYPpd_i-qpw1dneBTirTBLg8vOfo17f7l-Uq2fx8WC8Xm8RKpcbEqopZSLnlhZCUAk9TKfKy5FbkzBiWG1WVMrcmKwsK0qi0KFWaQ5YpIAYyfo5u97r9VLRQWvCzMd0PrjXDTnfG6X9_vKv1tnvVueKUCxIFvu4F6v9oq8VGu-h0aHU8NGFMylca4VeHfUP3Z4Iw6tYFC028EnRT0ExGJMkYVxEq91A7dCEMUB3lKdFzonpOS89p6ZioZmRexCLvy3tLR9Zbfvwv45ydAw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Montfort, Anne</creator><creator>Bertrand, Florie</creator><creator>Rochotte, Julia</creator><creator>Gilhodes, Julia</creator><creator>Filleron, Thomas</creator><creator>Milhès, Jean</creator><creator>Dufau, Carine</creator><creator>Imbert, Caroline</creator><creator>Riond, Joëlle</creator><creator>Tosolini, Marie</creator><creator>Clarke, Christopher J</creator><creator>Dufour, Florent</creator><creator>Constantinescu, Andrei A</creator><creator>Junior, Nilton De França</creator><creator>Garcia, Virginie</creator><creator>Record, Michel</creator><creator>Cordelier, Pierre</creator><creator>Brousset, Pierre</creator><creator>Rochaix, Philippe</creator><creator>Silvente-Poirot, Sandrine</creator><creator>Therville, Nicole</creator><creator>Andrieu-Abadie, Nathalie</creator><creator>Levade, Thierry</creator><creator>Hannun, Yusuf A</creator><creator>Benoist, Hervé</creator><creator>Meyer, Nicolas</creator><creator>Micheau, Olivier</creator><creator>Colacios, Céline</creator><creator>Ségui, Bruno</creator><general>American Association for Cancer Research</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8629-3291</orcidid><orcidid>https://orcid.org/0000-0002-7068-1361</orcidid><orcidid>https://orcid.org/0000-0003-0724-0659</orcidid><orcidid>https://orcid.org/0000-0003-2698-1970</orcidid><orcidid>https://orcid.org/0000-0003-2142-2619</orcidid><orcidid>https://orcid.org/0000-0003-3349-3369</orcidid><orcidid>https://orcid.org/0000-0001-5278-5952</orcidid><orcidid>https://orcid.org/0000-0003-2245-9069</orcidid><orcidid>https://orcid.org/0000-0001-8499-7984</orcidid><orcidid>https://orcid.org/0000-0003-2096-7967</orcidid><orcidid>https://orcid.org/0000-0002-4855-522X</orcidid><orcidid>https://orcid.org/0000-0002-6281-2376</orcidid><orcidid>https://orcid.org/0000-0001-6238-1599</orcidid><orcidid>https://orcid.org/0000-0002-7509-0675</orcidid><orcidid>https://orcid.org/0000-0002-2926-4902</orcidid><orcidid>https://orcid.org/0000-0001-6729-6852</orcidid><orcidid>https://orcid.org/0000-0003-2671-5576</orcidid><orcidid>https://orcid.org/0000-0003-1893-0022</orcidid><orcidid>https://orcid.org/0000-0002-6119-1889</orcidid></search><sort><creationdate>20210501</creationdate><title>Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy</title><author>Montfort, Anne ; Bertrand, Florie ; Rochotte, Julia ; Gilhodes, Julia ; Filleron, Thomas ; Milhès, Jean ; Dufau, Carine ; Imbert, Caroline ; Riond, Joëlle ; Tosolini, Marie ; Clarke, Christopher J ; Dufour, Florent ; Constantinescu, Andrei A ; Junior, Nilton De França ; Garcia, Virginie ; Record, Michel ; Cordelier, Pierre ; Brousset, Pierre ; Rochaix, Philippe ; Silvente-Poirot, Sandrine ; Therville, Nicole ; Andrieu-Abadie, Nathalie ; Levade, Thierry ; Hannun, Yusuf A ; Benoist, Hervé ; Meyer, Nicolas ; Micheau, Olivier ; Colacios, Céline ; Ségui, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-c6f2ce73c3b4511e377549dd3c492aa29a6fd59ca8db1e5a67bd679e886e0ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell Line, Tumor</topic><topic>Female</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Life Sciences</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - immunology</topic><topic>Melanoma - metabolism</topic><topic>Melanoma - pathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Programmed Cell Death 1 Receptor - antagonists & inhibitors</topic><topic>Sphingomyelin Phosphodiesterase - genetics</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>Th1 Cells - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montfort, Anne</creatorcontrib><creatorcontrib>Bertrand, Florie</creatorcontrib><creatorcontrib>Rochotte, Julia</creatorcontrib><creatorcontrib>Gilhodes, Julia</creatorcontrib><creatorcontrib>Filleron, Thomas</creatorcontrib><creatorcontrib>Milhès, Jean</creatorcontrib><creatorcontrib>Dufau, Carine</creatorcontrib><creatorcontrib>Imbert, Caroline</creatorcontrib><creatorcontrib>Riond, Joëlle</creatorcontrib><creatorcontrib>Tosolini, Marie</creatorcontrib><creatorcontrib>Clarke, Christopher J</creatorcontrib><creatorcontrib>Dufour, Florent</creatorcontrib><creatorcontrib>Constantinescu, Andrei A</creatorcontrib><creatorcontrib>Junior, Nilton De França</creatorcontrib><creatorcontrib>Garcia, Virginie</creatorcontrib><creatorcontrib>Record, Michel</creatorcontrib><creatorcontrib>Cordelier, Pierre</creatorcontrib><creatorcontrib>Brousset, Pierre</creatorcontrib><creatorcontrib>Rochaix, Philippe</creatorcontrib><creatorcontrib>Silvente-Poirot, Sandrine</creatorcontrib><creatorcontrib>Therville, Nicole</creatorcontrib><creatorcontrib>Andrieu-Abadie, Nathalie</creatorcontrib><creatorcontrib>Levade, Thierry</creatorcontrib><creatorcontrib>Hannun, Yusuf A</creatorcontrib><creatorcontrib>Benoist, Hervé</creatorcontrib><creatorcontrib>Meyer, Nicolas</creatorcontrib><creatorcontrib>Micheau, Olivier</creatorcontrib><creatorcontrib>Colacios, Céline</creatorcontrib><creatorcontrib>Ségui, Bruno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer immunology research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montfort, Anne</au><au>Bertrand, Florie</au><au>Rochotte, Julia</au><au>Gilhodes, Julia</au><au>Filleron, Thomas</au><au>Milhès, Jean</au><au>Dufau, Carine</au><au>Imbert, Caroline</au><au>Riond, Joëlle</au><au>Tosolini, Marie</au><au>Clarke, Christopher J</au><au>Dufour, Florent</au><au>Constantinescu, Andrei A</au><au>Junior, Nilton De França</au><au>Garcia, Virginie</au><au>Record, Michel</au><au>Cordelier, Pierre</au><au>Brousset, Pierre</au><au>Rochaix, Philippe</au><au>Silvente-Poirot, Sandrine</au><au>Therville, Nicole</au><au>Andrieu-Abadie, Nathalie</au><au>Levade, Thierry</au><au>Hannun, Yusuf A</au><au>Benoist, Hervé</au><au>Meyer, Nicolas</au><au>Micheau, Olivier</au><au>Colacios, Céline</au><au>Ségui, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy</atitle><jtitle>Cancer immunology research</jtitle><addtitle>Cancer Immunol Res</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><spage>568</spage><epage>582</epage><pages>568-582</pages><issn>2326-6066</issn><eissn>2326-6074</eissn><abstract>Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by
, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8
tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity.
, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing
expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8
T-cell-dependent immune responses and overcome resistance to anti-PD-1.</abstract><cop>United States</cop><pub>American Association for Cancer Research</pub><pmid>33727246</pmid><doi>10.1158/2326-6066.CIR-20-0342</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8629-3291</orcidid><orcidid>https://orcid.org/0000-0002-7068-1361</orcidid><orcidid>https://orcid.org/0000-0003-0724-0659</orcidid><orcidid>https://orcid.org/0000-0003-2698-1970</orcidid><orcidid>https://orcid.org/0000-0003-2142-2619</orcidid><orcidid>https://orcid.org/0000-0003-3349-3369</orcidid><orcidid>https://orcid.org/0000-0001-5278-5952</orcidid><orcidid>https://orcid.org/0000-0003-2245-9069</orcidid><orcidid>https://orcid.org/0000-0001-8499-7984</orcidid><orcidid>https://orcid.org/0000-0003-2096-7967</orcidid><orcidid>https://orcid.org/0000-0002-4855-522X</orcidid><orcidid>https://orcid.org/0000-0002-6281-2376</orcidid><orcidid>https://orcid.org/0000-0001-6238-1599</orcidid><orcidid>https://orcid.org/0000-0002-7509-0675</orcidid><orcidid>https://orcid.org/0000-0002-2926-4902</orcidid><orcidid>https://orcid.org/0000-0001-6729-6852</orcidid><orcidid>https://orcid.org/0000-0003-2671-5576</orcidid><orcidid>https://orcid.org/0000-0003-1893-0022</orcidid><orcidid>https://orcid.org/0000-0002-6119-1889</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2326-6066 |
ispartof | Cancer immunology research, 2021-05, Vol.9 (5), p.568-582 |
issn | 2326-6066 2326-6074 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9631340 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; American Association for Cancer Research |
subjects | Animals Antineoplastic Agents - pharmacology CD8-Positive T-Lymphocytes - immunology Cell Line, Tumor Female Humans Immunity Immunotherapy Life Sciences Melanoma - drug therapy Melanoma - immunology Melanoma - metabolism Melanoma - pathology Mice Mice, Inbred C57BL Programmed Cell Death 1 Receptor - antagonists & inhibitors Sphingomyelin Phosphodiesterase - genetics Sphingomyelin Phosphodiesterase - metabolism Th1 Cells - immunology |
title | Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutral%20Sphingomyelinase%202%20Heightens%20Anti-Melanoma%20Immune%20Responses%20and%20Anti-PD-1%20Therapy%20Efficacy&rft.jtitle=Cancer%20immunology%20research&rft.au=Montfort,%20Anne&rft.date=2021-05-01&rft.volume=9&rft.issue=5&rft.spage=568&rft.epage=582&rft.pages=568-582&rft.issn=2326-6066&rft.eissn=2326-6074&rft_id=info:doi/10.1158/2326-6066.CIR-20-0342&rft_dat=%3Cproquest_pubme%3E2502208236%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502208236&rft_id=info:pmid/33727246&rfr_iscdi=true |