Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes
DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation 1 – 3 . Here we analyse whole-genome sequences from 66,083 people—including 12,509 people w...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-11, Vol.611 (7934), p.105-114 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 7934 |
container_start_page | 105 |
container_title | Nature (London) |
container_volume | 611 |
creator | Wei, Wei Schon, Katherine R. Elgar, Greg Orioli, Andrea Tanguy, Melanie Giess, Adam Tischkowitz, Marc Caulfield, Mark J. Chinnery, Patrick F. |
description | DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation
1
–
3
. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 10
4
births and once in every 10
3
cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
A study examining DNA transfer from mitochondria to the nucleus using whole-genome sequences from 66,083 people shows that this is an ongoing dynamic process in normal cells with distinct roles in different types of cancer. |
doi_str_mv | 10.1038/s41586-022-05288-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9630118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731821881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-f499b1e14b8d3c06f41a68b702ae2c804288bff1d35268364ddae6c71ee77b613</originalsourceid><addsrcrecordid>eNp9kU9PFTEUxRuCkSf6BViYSdi4oNrbdtrOhoQA_kkIbnTddNo77w2ZaaF9Y-K3t_gQ0IWru7i_e-45OYQcAXsPTJgPRUJrFGWcU9ZyY6jeIyuQWlGpjN4nK8a4ocwIdUBelXLDGGtBy5fkQCjojO7MilxcL35ClynOPYaAoZnHbfKbFEMe3dRcXJ81Be8WjB5LM8ZGqZOq2GyW2cVmjTHNWF6TF4ObCr55mIfk-8fLb-ef6dXXT1_Oz66obyXb0kF2XQ8IsjdBeKYGCU6ZXjPukHvDZM3QDwME0XJVXcsQHCqvAVHrXoE4JKc73dulnzF4jNvsJnubx9nlnza50f69iePGrtMP2ynBAEwVePcgkFPNVLZ2HovHaXIR01Is15wL4LxVFT3-B71JS441XqUEGA7G3DviO8rnVErG4dEMMHtfkt2VZGtJ9ndJVtejt89jPJ78aaUCYgeUuoprzE-__yP7C4V2m94</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731821881</pqid></control><display><type>article</type><title>Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Wei, Wei ; Schon, Katherine R. ; Elgar, Greg ; Orioli, Andrea ; Tanguy, Melanie ; Giess, Adam ; Tischkowitz, Marc ; Caulfield, Mark J. ; Chinnery, Patrick F.</creator><creatorcontrib>Wei, Wei ; Schon, Katherine R. ; Elgar, Greg ; Orioli, Andrea ; Tanguy, Melanie ; Giess, Adam ; Tischkowitz, Marc ; Caulfield, Mark J. ; Chinnery, Patrick F.</creatorcontrib><description>DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation
1
–
3
. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 10
4
births and once in every 10
3
cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
A study examining DNA transfer from mitochondria to the nucleus using whole-genome sequences from 66,083 people shows that this is an ongoing dynamic process in normal cells with distinct roles in different types of cancer.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05288-7</identifier><identifier>PMID: 36198798</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/23 ; 631/208/212 ; 631/443/319/333 ; 631/67/69 ; 692/420/2489/144 ; Cancer ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Chromosomes ; Confidence intervals ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Breaks, Double-Stranded ; DNA methylation ; DNA Repair ; DNA, Mitochondrial - genetics ; DNA, Mitochondrial - metabolism ; Double-strand break repair ; Families & family life ; Gene sequencing ; Genome, Human - genetics ; Genomes ; Genomics ; Germ-Line Mutation ; Humanities and Social Sciences ; Humans ; Insertion ; Liposarcoma ; Liposarcoma, Myxoid - genetics ; Mann-Whitney U test ; Mitochondria - genetics ; Mitochondrial DNA ; multidisciplinary ; Mutation ; Neoplasms - genetics ; Nuclei (cytology) ; Nucleotide sequence ; Organelles ; Phylogeny ; Replication origins ; Science ; Science (multidisciplinary) ; Sequence Analysis, DNA ; Tumors ; Zinc finger proteins</subject><ispartof>Nature (London), 2022-11, Vol.611 (7934), p.105-114</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Nature Publishing Group Nov 3, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-f499b1e14b8d3c06f41a68b702ae2c804288bff1d35268364ddae6c71ee77b613</citedby><cites>FETCH-LOGICAL-c540t-f499b1e14b8d3c06f41a68b702ae2c804288bff1d35268364ddae6c71ee77b613</cites><orcidid>0000-0002-7065-6617 ; 0000-0001-8054-8954 ; 0000-0001-7323-1596 ; 0000-0002-7880-0628 ; 0000-0001-9295-3594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05288-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05288-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36198798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Schon, Katherine R.</creatorcontrib><creatorcontrib>Elgar, Greg</creatorcontrib><creatorcontrib>Orioli, Andrea</creatorcontrib><creatorcontrib>Tanguy, Melanie</creatorcontrib><creatorcontrib>Giess, Adam</creatorcontrib><creatorcontrib>Tischkowitz, Marc</creatorcontrib><creatorcontrib>Caulfield, Mark J.</creatorcontrib><creatorcontrib>Chinnery, Patrick F.</creatorcontrib><title>Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation
1
–
3
. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 10
4
births and once in every 10
3
cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
A study examining DNA transfer from mitochondria to the nucleus using whole-genome sequences from 66,083 people shows that this is an ongoing dynamic process in normal cells with distinct roles in different types of cancer.</description><subject>45/23</subject><subject>631/208/212</subject><subject>631/443/319/333</subject><subject>631/67/69</subject><subject>692/420/2489/144</subject><subject>Cancer</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Chromosomes</subject><subject>Confidence intervals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Mitochondrial - metabolism</subject><subject>Double-strand break repair</subject><subject>Families & family life</subject><subject>Gene sequencing</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germ-Line Mutation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Insertion</subject><subject>Liposarcoma</subject><subject>Liposarcoma, Myxoid - genetics</subject><subject>Mann-Whitney U test</subject><subject>Mitochondria - genetics</subject><subject>Mitochondrial DNA</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Nuclei (cytology)</subject><subject>Nucleotide sequence</subject><subject>Organelles</subject><subject>Phylogeny</subject><subject>Replication origins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sequence Analysis, DNA</subject><subject>Tumors</subject><subject>Zinc finger proteins</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9PFTEUxRuCkSf6BViYSdi4oNrbdtrOhoQA_kkIbnTddNo77w2ZaaF9Y-K3t_gQ0IWru7i_e-45OYQcAXsPTJgPRUJrFGWcU9ZyY6jeIyuQWlGpjN4nK8a4ocwIdUBelXLDGGtBy5fkQCjojO7MilxcL35ClynOPYaAoZnHbfKbFEMe3dRcXJ81Be8WjB5LM8ZGqZOq2GyW2cVmjTHNWF6TF4ObCr55mIfk-8fLb-ef6dXXT1_Oz66obyXb0kF2XQ8IsjdBeKYGCU6ZXjPukHvDZM3QDwME0XJVXcsQHCqvAVHrXoE4JKc73dulnzF4jNvsJnubx9nlnza50f69iePGrtMP2ynBAEwVePcgkFPNVLZ2HovHaXIR01Is15wL4LxVFT3-B71JS441XqUEGA7G3DviO8rnVErG4dEMMHtfkt2VZGtJ9ndJVtejt89jPJ78aaUCYgeUuoprzE-__yP7C4V2m94</recordid><startdate>20221103</startdate><enddate>20221103</enddate><creator>Wei, Wei</creator><creator>Schon, Katherine R.</creator><creator>Elgar, Greg</creator><creator>Orioli, Andrea</creator><creator>Tanguy, Melanie</creator><creator>Giess, Adam</creator><creator>Tischkowitz, Marc</creator><creator>Caulfield, Mark J.</creator><creator>Chinnery, Patrick F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7065-6617</orcidid><orcidid>https://orcid.org/0000-0001-8054-8954</orcidid><orcidid>https://orcid.org/0000-0001-7323-1596</orcidid><orcidid>https://orcid.org/0000-0002-7880-0628</orcidid><orcidid>https://orcid.org/0000-0001-9295-3594</orcidid></search><sort><creationdate>20221103</creationdate><title>Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes</title><author>Wei, Wei ; Schon, Katherine R. ; Elgar, Greg ; Orioli, Andrea ; Tanguy, Melanie ; Giess, Adam ; Tischkowitz, Marc ; Caulfield, Mark J. ; Chinnery, Patrick F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-f499b1e14b8d3c06f41a68b702ae2c804288bff1d35268364ddae6c71ee77b613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>45/23</topic><topic>631/208/212</topic><topic>631/443/319/333</topic><topic>631/67/69</topic><topic>692/420/2489/144</topic><topic>Cancer</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Chromosomes</topic><topic>Confidence intervals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Mitochondrial - metabolism</topic><topic>Double-strand break repair</topic><topic>Families & family life</topic><topic>Gene sequencing</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germ-Line Mutation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Insertion</topic><topic>Liposarcoma</topic><topic>Liposarcoma, Myxoid - genetics</topic><topic>Mann-Whitney U test</topic><topic>Mitochondria - genetics</topic><topic>Mitochondrial DNA</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Nuclei (cytology)</topic><topic>Nucleotide sequence</topic><topic>Organelles</topic><topic>Phylogeny</topic><topic>Replication origins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sequence Analysis, DNA</topic><topic>Tumors</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Schon, Katherine R.</creatorcontrib><creatorcontrib>Elgar, Greg</creatorcontrib><creatorcontrib>Orioli, Andrea</creatorcontrib><creatorcontrib>Tanguy, Melanie</creatorcontrib><creatorcontrib>Giess, Adam</creatorcontrib><creatorcontrib>Tischkowitz, Marc</creatorcontrib><creatorcontrib>Caulfield, Mark J.</creatorcontrib><creatorcontrib>Chinnery, Patrick F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wei</au><au>Schon, Katherine R.</au><au>Elgar, Greg</au><au>Orioli, Andrea</au><au>Tanguy, Melanie</au><au>Giess, Adam</au><au>Tischkowitz, Marc</au><au>Caulfield, Mark J.</au><au>Chinnery, Patrick F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-11-03</date><risdate>2022</risdate><volume>611</volume><issue>7934</issue><spage>105</spage><epage>114</epage><pages>105-114</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>DNA transfer from cytoplasmic organelles to the cell nucleus is a legacy of the endosymbiotic event—the majority of nuclear-mitochondrial segments (NUMTs) are thought to be ancient, preceding human speciation
1
–
3
. Here we analyse whole-genome sequences from 66,083 people—including 12,509 people with cancer—and demonstrate the ongoing transfer of mitochondrial DNA into the nucleus, contributing to a complex NUMT landscape. More than 99% of individuals had at least one of 1,637 different NUMTs, with 1 in 8 individuals having an ultra-rare NUMT that is present in less than 0.1% of the population. More than 90% of the extant NUMTs that we evaluated inserted into the nuclear genome after humans diverged from apes. Once embedded, the sequences were no longer under the evolutionary constraint seen within the mitochondrion, and NUMT-specific mutations had a different mutational signature to mitochondrial DNA. De novo NUMTs were observed in the germline once in every 10
4
births and once in every 10
3
cancers. NUMTs preferentially involved non-coding mitochondrial DNA, linking transcription and replication to their origin, with nuclear insertion involving multiple mechanisms including double-strand break repair associated with PR domain zinc-finger protein 9 (PRDM9) binding. The frequency of tumour-specific NUMTs differed between cancers, including a probably causal insertion in a myxoid liposarcoma. We found evidence of selection against NUMTs on the basis of size and genomic location, shaping a highly heterogenous and dynamic human NUMT landscape.
A study examining DNA transfer from mitochondria to the nucleus using whole-genome sequences from 66,083 people shows that this is an ongoing dynamic process in normal cells with distinct roles in different types of cancer.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36198798</pmid><doi>10.1038/s41586-022-05288-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7065-6617</orcidid><orcidid>https://orcid.org/0000-0001-8054-8954</orcidid><orcidid>https://orcid.org/0000-0001-7323-1596</orcidid><orcidid>https://orcid.org/0000-0002-7880-0628</orcidid><orcidid>https://orcid.org/0000-0001-9295-3594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-11, Vol.611 (7934), p.105-114 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9630118 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 45/23 631/208/212 631/443/319/333 631/67/69 692/420/2489/144 Cancer Cell Nucleus - genetics Cell Nucleus - metabolism Chromosomes Confidence intervals Deoxyribonucleic acid DNA DNA biosynthesis DNA Breaks, Double-Stranded DNA methylation DNA Repair DNA, Mitochondrial - genetics DNA, Mitochondrial - metabolism Double-strand break repair Families & family life Gene sequencing Genome, Human - genetics Genomes Genomics Germ-Line Mutation Humanities and Social Sciences Humans Insertion Liposarcoma Liposarcoma, Myxoid - genetics Mann-Whitney U test Mitochondria - genetics Mitochondrial DNA multidisciplinary Mutation Neoplasms - genetics Nuclei (cytology) Nucleotide sequence Organelles Phylogeny Replication origins Science Science (multidisciplinary) Sequence Analysis, DNA Tumors Zinc finger proteins |
title | Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear-embedded%20mitochondrial%20DNA%20sequences%20in%2066,083%20human%20genomes&rft.jtitle=Nature%20(London)&rft.au=Wei,%20Wei&rft.date=2022-11-03&rft.volume=611&rft.issue=7934&rft.spage=105&rft.epage=114&rft.pages=105-114&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05288-7&rft_dat=%3Cproquest_pubme%3E2731821881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731821881&rft_id=info:pmid/36198798&rfr_iscdi=true |