Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions
Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signa...
Gespeichert in:
Veröffentlicht in: | The annals of applied statistics 2022-12, Vol.16 (4), p.2626-2647 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2647 |
---|---|
container_issue | 4 |
container_start_page | 2626 |
container_title | The annals of applied statistics |
container_volume | 16 |
creator | Whiteman, Andrew S. Bartsch, Andreas J. Kang, Jian Johnson, Timothy D. |
description | Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone. |
doi_str_mv | 10.1214/22-AOAS1606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733206867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaL4ffIP5CjIaj666eYiVPELhB7Uc8hmJzWyTWqSrfTfm8UqeJp5M--9GWYQOqPkkjI6uWKsms1nL1QQsYMOqZzQaso52R1zzipB6-kBOkrpg5B60kzoPjrggvOmYfwQDTd6A8lpj523EMEbwDZE3EbtPNYmu7XLG2xjWGI7-IKD1z1e6oWH7AyOkEphVLlSc36BTeh7MBk6rDPOXwGnlc6uaEZqP4wG6QTtWd0nON3GY_R2f_d6-1g9zx-ebmfPleGM5oqDqYEYIqCTtWgY5VJKsKITrSDQ1toQaYVppRFaWNpaa3nDC7Jadrxr-DG6_vFdDe0SOgM-R92rVSzLxo0K2qn_He_e1SKslRRMThtSDM63BjF8DpCyWrpkoO-1hzAkxcqlGRGNmBbqxQ_VxJBSBPs3hhI1Pkoxpn4fxb8B1feJFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733206867</pqid></control><display><type>article</type><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><source>Project Euclid Complete</source><creator>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</creator><creatorcontrib>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</creatorcontrib><description>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/22-AOAS1606</identifier><identifier>PMID: 36338823</identifier><language>eng</language><ispartof>The annals of applied statistics, 2022-12, Vol.16 (4), p.2626-2647</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</citedby><cites>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids></links><search><creatorcontrib>Whiteman, Andrew S.</creatorcontrib><creatorcontrib>Bartsch, Andreas J.</creatorcontrib><creatorcontrib>Kang, Jian</creatorcontrib><creatorcontrib>Johnson, Timothy D.</creatorcontrib><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><title>The annals of applied statistics</title><description>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</description><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaL4ffIP5CjIaj666eYiVPELhB7Uc8hmJzWyTWqSrfTfm8UqeJp5M--9GWYQOqPkkjI6uWKsms1nL1QQsYMOqZzQaso52R1zzipB6-kBOkrpg5B60kzoPjrggvOmYfwQDTd6A8lpj523EMEbwDZE3EbtPNYmu7XLG2xjWGI7-IKD1z1e6oWH7AyOkEphVLlSc36BTeh7MBk6rDPOXwGnlc6uaEZqP4wG6QTtWd0nON3GY_R2f_d6-1g9zx-ebmfPleGM5oqDqYEYIqCTtWgY5VJKsKITrSDQ1toQaYVppRFaWNpaa3nDC7Jadrxr-DG6_vFdDe0SOgM-R92rVSzLxo0K2qn_He_e1SKslRRMThtSDM63BjF8DpCyWrpkoO-1hzAkxcqlGRGNmBbqxQ_VxJBSBPs3hhI1Pkoxpn4fxb8B1feJFQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Whiteman, Andrew S.</creator><creator>Bartsch, Andreas J.</creator><creator>Kang, Jian</creator><creator>Johnson, Timothy D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><author>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiteman, Andrew S.</creatorcontrib><creatorcontrib>Bartsch, Andreas J.</creatorcontrib><creatorcontrib>Kang, Jian</creatorcontrib><creatorcontrib>Johnson, Timothy D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiteman, Andrew S.</au><au>Bartsch, Andreas J.</au><au>Kang, Jian</au><au>Johnson, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</atitle><jtitle>The annals of applied statistics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>2626</spage><epage>2647</epage><pages>2626-2647</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</abstract><pmid>36338823</pmid><doi>10.1214/22-AOAS1606</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6157 |
ispartof | The annals of applied statistics, 2022-12, Vol.16 (4), p.2626-2647 |
issn | 1932-6157 1941-7330 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629780 |
source | Project Euclid Complete |
title | Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20brain%20activity%20from%20functional%20magnetic%20resonance%20imaging%20collected%20at%20two%20spatial%20resolutions&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Whiteman,%20Andrew%20S.&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.spage=2626&rft.epage=2647&rft.pages=2626-2647&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/22-AOAS1606&rft_dat=%3Cproquest_pubme%3E2733206867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733206867&rft_id=info:pmid/36338823&rfr_iscdi=true |