Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions

Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The annals of applied statistics 2022-12, Vol.16 (4), p.2626-2647
Hauptverfasser: Whiteman, Andrew S., Bartsch, Andreas J., Kang, Jian, Johnson, Timothy D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2647
container_issue 4
container_start_page 2626
container_title The annals of applied statistics
container_volume 16
creator Whiteman, Andrew S.
Bartsch, Andreas J.
Kang, Jian
Johnson, Timothy D.
description Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.
doi_str_mv 10.1214/22-AOAS1606
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733206867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</originalsourceid><addsrcrecordid>eNpVUU1LAzEQDaL4ffIP5CjIaj666eYiVPELhB7Uc8hmJzWyTWqSrfTfm8UqeJp5M--9GWYQOqPkkjI6uWKsms1nL1QQsYMOqZzQaso52R1zzipB6-kBOkrpg5B60kzoPjrggvOmYfwQDTd6A8lpj523EMEbwDZE3EbtPNYmu7XLG2xjWGI7-IKD1z1e6oWH7AyOkEphVLlSc36BTeh7MBk6rDPOXwGnlc6uaEZqP4wG6QTtWd0nON3GY_R2f_d6-1g9zx-ebmfPleGM5oqDqYEYIqCTtWgY5VJKsKITrSDQ1toQaYVppRFaWNpaa3nDC7Jadrxr-DG6_vFdDe0SOgM-R92rVSzLxo0K2qn_He_e1SKslRRMThtSDM63BjF8DpCyWrpkoO-1hzAkxcqlGRGNmBbqxQ_VxJBSBPs3hhI1Pkoxpn4fxb8B1feJFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733206867</pqid></control><display><type>article</type><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><source>Project Euclid Complete</source><creator>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</creator><creatorcontrib>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</creatorcontrib><description>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</description><identifier>ISSN: 1932-6157</identifier><identifier>EISSN: 1941-7330</identifier><identifier>DOI: 10.1214/22-AOAS1606</identifier><identifier>PMID: 36338823</identifier><language>eng</language><ispartof>The annals of applied statistics, 2022-12, Vol.16 (4), p.2626-2647</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</citedby><cites>FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27915,27916</link.rule.ids></links><search><creatorcontrib>Whiteman, Andrew S.</creatorcontrib><creatorcontrib>Bartsch, Andreas J.</creatorcontrib><creatorcontrib>Kang, Jian</creatorcontrib><creatorcontrib>Johnson, Timothy D.</creatorcontrib><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><title>The annals of applied statistics</title><description>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</description><issn>1932-6157</issn><issn>1941-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1LAzEQDaL4ffIP5CjIaj666eYiVPELhB7Uc8hmJzWyTWqSrfTfm8UqeJp5M--9GWYQOqPkkjI6uWKsms1nL1QQsYMOqZzQaso52R1zzipB6-kBOkrpg5B60kzoPjrggvOmYfwQDTd6A8lpj523EMEbwDZE3EbtPNYmu7XLG2xjWGI7-IKD1z1e6oWH7AyOkEphVLlSc36BTeh7MBk6rDPOXwGnlc6uaEZqP4wG6QTtWd0nON3GY_R2f_d6-1g9zx-ebmfPleGM5oqDqYEYIqCTtWgY5VJKsKITrSDQ1toQaYVppRFaWNpaa3nDC7Jadrxr-DG6_vFdDe0SOgM-R92rVSzLxo0K2qn_He_e1SKslRRMThtSDM63BjF8DpCyWrpkoO-1hzAkxcqlGRGNmBbqxQ_VxJBSBPs3hhI1Pkoxpn4fxb8B1feJFQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Whiteman, Andrew S.</creator><creator>Bartsch, Andreas J.</creator><creator>Kang, Jian</creator><creator>Johnson, Timothy D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</title><author>Whiteman, Andrew S. ; Bartsch, Andreas J. ; Kang, Jian ; Johnson, Timothy D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-3ec5e0c06ed9568213999ef6d6b60eb5ac09f6cb9c6a6f1bfff3839c6fa9d3d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiteman, Andrew S.</creatorcontrib><creatorcontrib>Bartsch, Andreas J.</creatorcontrib><creatorcontrib>Kang, Jian</creatorcontrib><creatorcontrib>Johnson, Timothy D.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The annals of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiteman, Andrew S.</au><au>Bartsch, Andreas J.</au><au>Kang, Jian</au><au>Johnson, Timothy D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions</atitle><jtitle>The annals of applied statistics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>2626</spage><epage>2647</epage><pages>2626-2647</pages><issn>1932-6157</issn><eissn>1941-7330</eissn><abstract>Neuroradiologists and neurosurgeons increasingly opt to use functional magnetic resonance imaging (fMRI) to map functionally relevant brain regions for noninvasive presurgical planning and intraoperative neuronavigation. This application requires a high degree of spatial accuracy, but the fMRI signal-to-noise ratio (SNR) decreases as spatial resolution increases. In practice, fMRI scans can be collected at multiple spatial resolutions, and it is of interest to make more accurate inference on brain activity by combining data with different resolutions. To this end, we develop a new Bayesian model to leverage both better anatomical precision in high resolution fMRI and higher SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean intensity function and develop an efficient, scalable posterior computation algorithm to integrate both sources of data. We draw posterior samples using an algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded parameter space. We illustrate our method in analysis of presurgical fMRI data, and show in simulation that it infers the mean intensity more accurately than alternatives that use either the high or standard resolution fMRI data alone.</abstract><pmid>36338823</pmid><doi>10.1214/22-AOAS1606</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-6157
ispartof The annals of applied statistics, 2022-12, Vol.16 (4), p.2626-2647
issn 1932-6157
1941-7330
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9629780
source Project Euclid Complete
title Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20inference%20for%20brain%20activity%20from%20functional%20magnetic%20resonance%20imaging%20collected%20at%20two%20spatial%20resolutions&rft.jtitle=The%20annals%20of%20applied%20statistics&rft.au=Whiteman,%20Andrew%20S.&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.spage=2626&rft.epage=2647&rft.pages=2626-2647&rft.issn=1932-6157&rft.eissn=1941-7330&rft_id=info:doi/10.1214/22-AOAS1606&rft_dat=%3Cproquest_pubme%3E2733206867%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733206867&rft_id=info:pmid/36338823&rfr_iscdi=true