Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts

The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein‐coding mRNAs is mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2022-11, Vol.41 (21), p.e110192-n/a
Hauptverfasser: Mazille, Maxime, Buczak, Katarzyna, Scheiffele, Peter, Mauger, Oriane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e110192
container_title The EMBO journal
container_volume 41
creator Mazille, Maxime
Buczak, Katarzyna
Scheiffele, Peter
Mauger, Oriane
description The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein‐coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron‐retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub‐populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron‐retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue‐specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome. Synopsis Regulated intron retention represents a mechanism for the control of gene expression. In neurons, this is shown here to affect nuclear retention of mRNAs in response to specific neuronal stimuli. Subcellular mapping of transcripts shows that a large portion of stable intron‐retaining mRNAs is localized to the nucleus. Introns retained in nuclear‐stored transcripts resemble canonically spliced introns and their splicing can be regulated by neuronal stimuli. In response to neuronal stimulation, a subset of intron‐retaining transcripts complete their splicing, are exported to the cytosol, and are recruited for rapid protein synthesis. Distinct sub‐populations of intron‐retaining transcripts are regulated in response to specific neuronal cues. Distinct signaling pathways regulate neuronal stimulus‐dependent regulation of nuclear intron retention transcripts. Graphical Abstract Stored nuclear intron‐retaining transcripts are released into the cytosol upon acute and specific neuronal stimuli, to rapidly increase mRNAs translation and protein synthesis.
doi_str_mv 10.15252/embj.2021110192
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9627664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730993687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5192-739715a84181e37b147fa433185a6419ae7026a0e7b323ea4b3c13435ddc34603</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxdd24lhCSFCVPxWxANaW47mZ8ZDYgx2DuuMReEaeBA9TOhQJsfLifufoHB9C7gM9gYY17DFO_eaEUQYAFBS7QRYgWlozKpubZEFZC7WATh2ROyltKKVNJ-E2OeItCCU5LMin97Ob8pjTj2_f0xatG5ytIk5hiaPzqyoM1bzGymOOwZuxmqPxyUa3ncOE5RRDXq0rn-2IJlbOzwUrVhFn4_zO4CBId8mtwYwJ712-x-Tji7MPp6_q83cvX58-O69tUzrUkisJjelKcEAuexByMIJz6BrTClAGZSlmKMqeM45G9NwCF7xZLi0v7fkxebr33eZ-wqXFksqMehvdZOKFDsbp6xfv1noVvmjVMtm2ohg8ujSI4XPGNOvJJYvjaDyGnDSTIFvFlFQFffgXugk5lp_aUZwqxdtOForuKRtDShGHqzBA9a8l9W5JfViySB78WeJK8Hu6AjzZA1_diBf_NdRnb5-_ueYPe3kqSr_CeAj-z0w_AXFZv1s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730993687</pqid></control><display><type>article</type><title>Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mazille, Maxime ; Buczak, Katarzyna ; Scheiffele, Peter ; Mauger, Oriane</creator><creatorcontrib>Mazille, Maxime ; Buczak, Katarzyna ; Scheiffele, Peter ; Mauger, Oriane</creatorcontrib><description>The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein‐coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron‐retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub‐populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron‐retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue‐specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome. Synopsis Regulated intron retention represents a mechanism for the control of gene expression. In neurons, this is shown here to affect nuclear retention of mRNAs in response to specific neuronal stimuli. Subcellular mapping of transcripts shows that a large portion of stable intron‐retaining mRNAs is localized to the nucleus. Introns retained in nuclear‐stored transcripts resemble canonically spliced introns and their splicing can be regulated by neuronal stimuli. In response to neuronal stimulation, a subset of intron‐retaining transcripts complete their splicing, are exported to the cytosol, and are recruited for rapid protein synthesis. Distinct sub‐populations of intron‐retaining transcripts are regulated in response to specific neuronal cues. Distinct signaling pathways regulate neuronal stimulus‐dependent regulation of nuclear intron retention transcripts. Graphical Abstract Stored nuclear intron‐retaining transcripts are released into the cytosol upon acute and specific neuronal stimuli, to rapidly increase mRNAs translation and protein synthesis.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021110192</identifier><identifier>PMID: 36149731</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>alternative splicing ; Animals ; Barriers ; Cell Nucleus - metabolism ; Cytosol ; EMBO27 ; EMBO36 ; Exports ; Gene expression ; immediate early gene ; intron retention ; Introns ; Localization ; Mice ; Neural coding ; neuronal activity ; Neurons ; Neurons - metabolism ; nuclear export ; Populations ; Protein biosynthesis ; Protein synthesis ; Proteins ; Retention ; RNA, Messenger - metabolism ; Selectivity ; Signal transduction ; Signaling ; Splicing ; Stimulation ; Stimuli ; Transcriptome ; Transcriptomes</subject><ispartof>The EMBO journal, 2022-11, Vol.41 (21), p.e110192-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5192-739715a84181e37b147fa433185a6419ae7026a0e7b323ea4b3c13435ddc34603</citedby><cites>FETCH-LOGICAL-c5192-739715a84181e37b147fa433185a6419ae7026a0e7b323ea4b3c13435ddc34603</cites><orcidid>0000-0002-9516-9399 ; 0000-0003-0158-5875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627664/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627664/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1412,1428,27905,27906,41101,42170,45555,45556,46390,46814,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36149731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mazille, Maxime</creatorcontrib><creatorcontrib>Buczak, Katarzyna</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><creatorcontrib>Mauger, Oriane</creatorcontrib><title>Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein‐coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron‐retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub‐populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron‐retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue‐specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome. Synopsis Regulated intron retention represents a mechanism for the control of gene expression. In neurons, this is shown here to affect nuclear retention of mRNAs in response to specific neuronal stimuli. Subcellular mapping of transcripts shows that a large portion of stable intron‐retaining mRNAs is localized to the nucleus. Introns retained in nuclear‐stored transcripts resemble canonically spliced introns and their splicing can be regulated by neuronal stimuli. In response to neuronal stimulation, a subset of intron‐retaining transcripts complete their splicing, are exported to the cytosol, and are recruited for rapid protein synthesis. Distinct sub‐populations of intron‐retaining transcripts are regulated in response to specific neuronal cues. Distinct signaling pathways regulate neuronal stimulus‐dependent regulation of nuclear intron retention transcripts. Graphical Abstract Stored nuclear intron‐retaining transcripts are released into the cytosol upon acute and specific neuronal stimuli, to rapidly increase mRNAs translation and protein synthesis.</description><subject>alternative splicing</subject><subject>Animals</subject><subject>Barriers</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytosol</subject><subject>EMBO27</subject><subject>EMBO36</subject><subject>Exports</subject><subject>Gene expression</subject><subject>immediate early gene</subject><subject>intron retention</subject><subject>Introns</subject><subject>Localization</subject><subject>Mice</subject><subject>Neural coding</subject><subject>neuronal activity</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>nuclear export</subject><subject>Populations</subject><subject>Protein biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Retention</subject><subject>RNA, Messenger - metabolism</subject><subject>Selectivity</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Splicing</subject><subject>Stimulation</subject><subject>Stimuli</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokNhzwpFYsMmxdd24lhCSFCVPxWxANaW47mZ8ZDYgx2DuuMReEaeBA9TOhQJsfLifufoHB9C7gM9gYY17DFO_eaEUQYAFBS7QRYgWlozKpubZEFZC7WATh2ROyltKKVNJ-E2OeItCCU5LMin97Ob8pjTj2_f0xatG5ytIk5hiaPzqyoM1bzGymOOwZuxmqPxyUa3ncOE5RRDXq0rn-2IJlbOzwUrVhFn4_zO4CBId8mtwYwJ712-x-Tji7MPp6_q83cvX58-O69tUzrUkisJjelKcEAuexByMIJz6BrTClAGZSlmKMqeM45G9NwCF7xZLi0v7fkxebr33eZ-wqXFksqMehvdZOKFDsbp6xfv1noVvmjVMtm2ohg8ujSI4XPGNOvJJYvjaDyGnDSTIFvFlFQFffgXugk5lp_aUZwqxdtOForuKRtDShGHqzBA9a8l9W5JfViySB78WeJK8Hu6AjzZA1_diBf_NdRnb5-_ueYPe3kqSr_CeAj-z0w_AXFZv1s</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Mazille, Maxime</creator><creator>Buczak, Katarzyna</creator><creator>Scheiffele, Peter</creator><creator>Mauger, Oriane</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9516-9399</orcidid><orcidid>https://orcid.org/0000-0003-0158-5875</orcidid></search><sort><creationdate>20221102</creationdate><title>Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts</title><author>Mazille, Maxime ; Buczak, Katarzyna ; Scheiffele, Peter ; Mauger, Oriane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5192-739715a84181e37b147fa433185a6419ae7026a0e7b323ea4b3c13435ddc34603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>alternative splicing</topic><topic>Animals</topic><topic>Barriers</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytosol</topic><topic>EMBO27</topic><topic>EMBO36</topic><topic>Exports</topic><topic>Gene expression</topic><topic>immediate early gene</topic><topic>intron retention</topic><topic>Introns</topic><topic>Localization</topic><topic>Mice</topic><topic>Neural coding</topic><topic>neuronal activity</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>nuclear export</topic><topic>Populations</topic><topic>Protein biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Retention</topic><topic>RNA, Messenger - metabolism</topic><topic>Selectivity</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Splicing</topic><topic>Stimulation</topic><topic>Stimuli</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mazille, Maxime</creatorcontrib><creatorcontrib>Buczak, Katarzyna</creatorcontrib><creatorcontrib>Scheiffele, Peter</creatorcontrib><creatorcontrib>Mauger, Oriane</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazille, Maxime</au><au>Buczak, Katarzyna</au><au>Scheiffele, Peter</au><au>Mauger, Oriane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-11-02</date><risdate>2022</risdate><volume>41</volume><issue>21</issue><spage>e110192</spage><epage>n/a</epage><pages>e110192-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein‐coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron‐retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub‐populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron‐retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue‐specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome. Synopsis Regulated intron retention represents a mechanism for the control of gene expression. In neurons, this is shown here to affect nuclear retention of mRNAs in response to specific neuronal stimuli. Subcellular mapping of transcripts shows that a large portion of stable intron‐retaining mRNAs is localized to the nucleus. Introns retained in nuclear‐stored transcripts resemble canonically spliced introns and their splicing can be regulated by neuronal stimuli. In response to neuronal stimulation, a subset of intron‐retaining transcripts complete their splicing, are exported to the cytosol, and are recruited for rapid protein synthesis. Distinct sub‐populations of intron‐retaining transcripts are regulated in response to specific neuronal cues. Distinct signaling pathways regulate neuronal stimulus‐dependent regulation of nuclear intron retention transcripts. Graphical Abstract Stored nuclear intron‐retaining transcripts are released into the cytosol upon acute and specific neuronal stimuli, to rapidly increase mRNAs translation and protein synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36149731</pmid><doi>10.15252/embj.2021110192</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9516-9399</orcidid><orcidid>https://orcid.org/0000-0003-0158-5875</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2022-11, Vol.41 (21), p.e110192-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9627664
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects alternative splicing
Animals
Barriers
Cell Nucleus - metabolism
Cytosol
EMBO27
EMBO36
Exports
Gene expression
immediate early gene
intron retention
Introns
Localization
Mice
Neural coding
neuronal activity
Neurons
Neurons - metabolism
nuclear export
Populations
Protein biosynthesis
Protein synthesis
Proteins
Retention
RNA, Messenger - metabolism
Selectivity
Signal transduction
Signaling
Splicing
Stimulation
Stimuli
Transcriptome
Transcriptomes
title Stimulus‐specific remodeling of the neuronal transcriptome through nuclear intron‐retaining transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimulus%E2%80%90specific%20remodeling%20of%20the%20neuronal%20transcriptome%20through%20nuclear%20intron%E2%80%90retaining%20transcripts&rft.jtitle=The%20EMBO%20journal&rft.au=Mazille,%20Maxime&rft.date=2022-11-02&rft.volume=41&rft.issue=21&rft.spage=e110192&rft.epage=n/a&rft.pages=e110192-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021110192&rft_dat=%3Cproquest_pubme%3E2730993687%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730993687&rft_id=info:pmid/36149731&rfr_iscdi=true