Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification

The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-11, Vol.298 (11), p.102548-102548, Article 102548
Hauptverfasser: Bommisetti, Praneeth, Young, Anthony, Bandarian, Vahe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102548
container_issue 11
container_start_page 102548
container_title The Journal of biological chemistry
container_volume 298
creator Bommisetti, Praneeth
Young, Anthony
Bandarian, Vahe
description The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.
doi_str_mv 10.1016/j.jbc.2022.102548
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9626948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822009929</els_id><sourcerecordid>2720429946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-df2f10efa8734c13bba73f9b69024d91b8e4e214aba7dd9e06cfdb6e8739842b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfCA3BBPnLJYjveJBYSUlUtBaktEgKJm-XYk65Xib3YTqTwIlx5Fp4M725bwaW-WDP-5p8Z_wi9omRJCa3ebpfbVi8ZYSzHbMWbJ2hBSVMW5Yp-f4oWhDBaCLZqTtHzGLckHy7oM3RaVrShteAL9Gvdj9oalax32Hc4bQDHsY0pqASHxJeb82LwxnazdbcY3M95gIiv3bC-xD0oE3Hy2Lo_vyebgscBtHcx2TTeSyqHYfL9IVbB9jPeExAmMHgM1lgHeDPvIBy6WH2Y5QU66VQf4eXdfYa-fVh_vfhYXH2-_HRxflXoFa1TYTrWUQKdauqSa1q2rarLTrSVIIwbQdsGODDKVc4bI4BUujNtBRkXDWdteYbeH3V3YzuA0eDy5r3cBTuoMEuvrPz_xdmNvPWTFBWrBG-ywJs7geB_jBCTHGzU0PfKgR-jZDUjnAnBq4zSI6qDjzFA99CGErk3VG5lNlTuDZVHQ3PN63_ne6i4dzAD744A5F-aLAQZtQWnwdhsRZLG20fk_wKv7LfG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720429946</pqid></control><display><type>article</type><title>Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bommisetti, Praneeth ; Young, Anthony ; Bandarian, Vahe</creator><creatorcontrib>Bommisetti, Praneeth ; Young, Anthony ; Bandarian, Vahe</creatorcontrib><description>The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102548</identifier><identifier>PMID: 36181794</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>biochemistry ; Escherichia coli Proteins - metabolism ; nucleic acid enzymology ; One-Carbon Group Transferases - genetics ; One-Carbon Group Transferases - metabolism ; Reducing Agents ; RNA modifications ; RNA, Transfer - metabolism ; tRNA ; tRNA methyltransferase ; Uridine</subject><ispartof>The Journal of biological chemistry, 2022-11, Vol.298 (11), p.102548-102548, Article 102548</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-df2f10efa8734c13bba73f9b69024d91b8e4e214aba7dd9e06cfdb6e8739842b3</citedby><cites>FETCH-LOGICAL-c517t-df2f10efa8734c13bba73f9b69024d91b8e4e214aba7dd9e06cfdb6e8739842b3</cites><orcidid>0000-0003-2273-346X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626948/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9626948/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36181794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bommisetti, Praneeth</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Bandarian, Vahe</creatorcontrib><title>Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.</description><subject>biochemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>nucleic acid enzymology</subject><subject>One-Carbon Group Transferases - genetics</subject><subject>One-Carbon Group Transferases - metabolism</subject><subject>Reducing Agents</subject><subject>RNA modifications</subject><subject>RNA, Transfer - metabolism</subject><subject>tRNA</subject><subject>tRNA methyltransferase</subject><subject>Uridine</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi1ERZfCA3BBPnLJYjveJBYSUlUtBaktEgKJm-XYk65Xib3YTqTwIlx5Fp4M725bwaW-WDP-5p8Z_wi9omRJCa3ebpfbVi8ZYSzHbMWbJ2hBSVMW5Yp-f4oWhDBaCLZqTtHzGLckHy7oM3RaVrShteAL9Gvdj9oalax32Hc4bQDHsY0pqASHxJeb82LwxnazdbcY3M95gIiv3bC-xD0oE3Hy2Lo_vyebgscBtHcx2TTeSyqHYfL9IVbB9jPeExAmMHgM1lgHeDPvIBy6WH2Y5QU66VQf4eXdfYa-fVh_vfhYXH2-_HRxflXoFa1TYTrWUQKdauqSa1q2rarLTrSVIIwbQdsGODDKVc4bI4BUujNtBRkXDWdteYbeH3V3YzuA0eDy5r3cBTuoMEuvrPz_xdmNvPWTFBWrBG-ywJs7geB_jBCTHGzU0PfKgR-jZDUjnAnBq4zSI6qDjzFA99CGErk3VG5lNlTuDZVHQ3PN63_ne6i4dzAD744A5F-aLAQZtQWnwdhsRZLG20fk_wKv7LfG</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Bommisetti, Praneeth</creator><creator>Young, Anthony</creator><creator>Bandarian, Vahe</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2273-346X</orcidid></search><sort><creationdate>20221101</creationdate><title>Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification</title><author>Bommisetti, Praneeth ; Young, Anthony ; Bandarian, Vahe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-df2f10efa8734c13bba73f9b69024d91b8e4e214aba7dd9e06cfdb6e8739842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biochemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>nucleic acid enzymology</topic><topic>One-Carbon Group Transferases - genetics</topic><topic>One-Carbon Group Transferases - metabolism</topic><topic>Reducing Agents</topic><topic>RNA modifications</topic><topic>RNA, Transfer - metabolism</topic><topic>tRNA</topic><topic>tRNA methyltransferase</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bommisetti, Praneeth</creatorcontrib><creatorcontrib>Young, Anthony</creatorcontrib><creatorcontrib>Bandarian, Vahe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bommisetti, Praneeth</au><au>Young, Anthony</au><au>Bandarian, Vahe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>298</volume><issue>11</issue><spage>102548</spage><epage>102548</epage><pages>102548-102548</pages><artnum>102548</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The evolutionarily conserved bacterial proteins MnmE and MnmG collectively install a carboxymethylaminomethyl (cmnm) group at the fifth position of wobble uridines of several tRNA species. While the reaction catalyzed by MnmEG is one of the central steps in the biosynthesis of the methylaminomethyl (mnm) posttranscriptional tRNA modification, details of the reaction remain elusive. Glycine is known to be the source of the carboxy methylamino moiety of cmnm, and a tetrahydrofolate (THF) analog is thought to supply the one carbon that is appended to the fifth position of U. However, the nature of the folate analog remains unknown. This article reports the in vitro biochemical reconstitution of the MnmEG reaction. Using isotopically labeled methyl and methylene THF analogs, we demonstrate that methylene THF is the true substrate. We also show that reduced FAD is required for the reaction and that DTT can replace the NADH in its role as a reductant. We discuss the implications of these methylene-THF and reductant requirements on the mechanism of this key tRNA modification catalyzed by MnmEG.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36181794</pmid><doi>10.1016/j.jbc.2022.102548</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2273-346X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-11, Vol.298 (11), p.102548-102548, Article 102548
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9626948
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects biochemistry
Escherichia coli Proteins - metabolism
nucleic acid enzymology
One-Carbon Group Transferases - genetics
One-Carbon Group Transferases - metabolism
Reducing Agents
RNA modifications
RNA, Transfer - metabolism
tRNA
tRNA methyltransferase
Uridine
title Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidation%20of%20the%20substrate%20of%20tRNA-modifying%20enzymes%20MnmEG%20leads%20to%20in%C2%A0vitro%20reconstitution%20of%20an%20evolutionarily%20conserved%20uridine%20hypermodification&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bommisetti,%20Praneeth&rft.date=2022-11-01&rft.volume=298&rft.issue=11&rft.spage=102548&rft.epage=102548&rft.pages=102548-102548&rft.artnum=102548&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102548&rft_dat=%3Cproquest_pubme%3E2720429946%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720429946&rft_id=info:pmid/36181794&rft_els_id=S0021925822009929&rfr_iscdi=true