Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections
Hydroxyapatite (HAp) attracts interest as a biomaterial for use in bone substitution or allografts. In the current work, biomaterial nanocomposites based on HAp and pectin were synthesized by using the double decomposition method, which involved using pectin extracted from fresh cladodes of the pric...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-10, Vol.14 (20), p.4446 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 4446 |
container_title | Polymers |
container_volume | 14 |
creator | Saidi, N. Azzaoui, K. Ramdani, M. Mejdoubi, E. Jaradat, N. Jodeh, S. Hammouti, B. Sabbahi, R. Lamhamdi, A. |
description | Hydroxyapatite (HAp) attracts interest as a biomaterial for use in bone substitution or allografts. In the current work, biomaterial nanocomposites based on HAp and pectin were synthesized by using the double decomposition method, which involved using pectin extracted from fresh cladodes of the prickly pear, Opuntia ficus-indica. The crystallinity, purity, and several analytical techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy were used to understand the surface’s shape. The results revealed that the produced HAp/pectin nanoparticles are pure, spherical, and amorphous. The spectroscopic data indicated a substantial interaction between HAp and pectin, specifically between Ca (II) and pectin hydroxyl and carboxyl groups. The presence of pectin showed a noticeable influence on the prepared nanocomposite texture and porosity. We further assess the antibacterial and antifungal activity of the developed nanocomposite against a number of pathogenic bacteria and fungi, evaluated by the well diffusion method. In the absence of pectin, the XRD analysis revealed that the HAp nanoparticles had 10.93% crystallinity. When the pectin concentration reached 10 wt.%, it was reduced to approximately 7.29%. All synthesized nanocomposites demonstrated strong antimicrobial activity against both Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria in addition to various fungi (e.g., Aspergillus fumigatus, Penicillium funiculosum, and Trichoderma viride). This study endorses the HAp/Pectin nanocomposite as an efficient antimicrobial material for biomedical advanced applications. |
doi_str_mv | 10.3390/polym14204446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9612341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729518886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-eb0c46f71839b7a2de7c718acb456137c813056f2273496f3c534fbaba8a59e73</originalsourceid><addsrcrecordid>eNpdkU1r3DAQQE1poCHJsXdBL7m40Zcl-xIo226zsNvkkJzFWJZ2FWzJlexQ0z9fLQkhqS6jGT0eM5qi-EzwV8YafDWGfhkIp5hzLj4UpxRLVnIm8Mc390_FRUqPOB9eCUHkafH3u0lu71Gw6Bf4cFi6GP4sMMLkJnN1Z_TkPFqFYQwpF5CNYUC34-wnB2jt9JzKje-cBrTqoQudSciGiKaDQTvwsDeD8dNRvnM6htZBjzbeHq3Bp_PixEKfzMVLPCse1j_uVzfl9vbnZvVtW2rW0Kk0LdZcWElq1rQSaGekzgnoNg9BmNQ1YbgSllLJeCMs0xXjtoUWaqgaI9lZcf3sHed2MJ3OLUXo1RjdAHFRAZx6_-LdQe3Dk2oEoYyTLLh8EcTwezZpUoNL2vQ9eBPmpKikTUXquhYZ_fIf-hjm6PN4R6quaEU5z1T5TOVPSSka-9oMweq4TvVunewf-syV6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728525244</pqid></control><display><type>article</type><title>Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Saidi, N. ; Azzaoui, K. ; Ramdani, M. ; Mejdoubi, E. ; Jaradat, N. ; Jodeh, S. ; Hammouti, B. ; Sabbahi, R. ; Lamhamdi, A.</creator><creatorcontrib>Saidi, N. ; Azzaoui, K. ; Ramdani, M. ; Mejdoubi, E. ; Jaradat, N. ; Jodeh, S. ; Hammouti, B. ; Sabbahi, R. ; Lamhamdi, A.</creatorcontrib><description>Hydroxyapatite (HAp) attracts interest as a biomaterial for use in bone substitution or allografts. In the current work, biomaterial nanocomposites based on HAp and pectin were synthesized by using the double decomposition method, which involved using pectin extracted from fresh cladodes of the prickly pear, Opuntia ficus-indica. The crystallinity, purity, and several analytical techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy were used to understand the surface’s shape. The results revealed that the produced HAp/pectin nanoparticles are pure, spherical, and amorphous. The spectroscopic data indicated a substantial interaction between HAp and pectin, specifically between Ca (II) and pectin hydroxyl and carboxyl groups. The presence of pectin showed a noticeable influence on the prepared nanocomposite texture and porosity. We further assess the antibacterial and antifungal activity of the developed nanocomposite against a number of pathogenic bacteria and fungi, evaluated by the well diffusion method. In the absence of pectin, the XRD analysis revealed that the HAp nanoparticles had 10.93% crystallinity. When the pectin concentration reached 10 wt.%, it was reduced to approximately 7.29%. All synthesized nanocomposites demonstrated strong antimicrobial activity against both Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria in addition to various fungi (e.g., Aspergillus fumigatus, Penicillium funiculosum, and Trichoderma viride). This study endorses the HAp/Pectin nanocomposite as an efficient antimicrobial material for biomedical advanced applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14204446</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antimicrobial agents ; Aqueous solutions ; Biomedical materials ; Bones ; Carbon ; Cellulose ; Coliforms ; Crystal structure ; Crystallinity ; E coli ; Ethanol ; Fourier transforms ; Fruits ; Fungi ; Fungicides ; Gram-positive bacteria ; Hydroxyapatite ; Infrared analysis ; Infrared spectroscopy ; Microorganisms ; Nanocomposites ; Nanoparticles ; Nitrates ; Pectin ; Pharmaceutical industry ; Pseudomonas aeruginosa ; Radiation ; Scanning electron microscopy ; Synthesis</subject><ispartof>Polymers, 2022-10, Vol.14 (20), p.4446</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-eb0c46f71839b7a2de7c718acb456137c813056f2273496f3c534fbaba8a59e73</citedby><cites>FETCH-LOGICAL-c392t-eb0c46f71839b7a2de7c718acb456137c813056f2273496f3c534fbaba8a59e73</cites><orcidid>0000-0002-8745-8799 ; 0000-0003-2291-6821 ; 0000-0003-3673-7904 ; 0000-0002-1841-4944 ; 0000-0003-0202-0112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612341/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9612341/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids></links><search><creatorcontrib>Saidi, N.</creatorcontrib><creatorcontrib>Azzaoui, K.</creatorcontrib><creatorcontrib>Ramdani, M.</creatorcontrib><creatorcontrib>Mejdoubi, E.</creatorcontrib><creatorcontrib>Jaradat, N.</creatorcontrib><creatorcontrib>Jodeh, S.</creatorcontrib><creatorcontrib>Hammouti, B.</creatorcontrib><creatorcontrib>Sabbahi, R.</creatorcontrib><creatorcontrib>Lamhamdi, A.</creatorcontrib><title>Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections</title><title>Polymers</title><description>Hydroxyapatite (HAp) attracts interest as a biomaterial for use in bone substitution or allografts. In the current work, biomaterial nanocomposites based on HAp and pectin were synthesized by using the double decomposition method, which involved using pectin extracted from fresh cladodes of the prickly pear, Opuntia ficus-indica. The crystallinity, purity, and several analytical techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy were used to understand the surface’s shape. The results revealed that the produced HAp/pectin nanoparticles are pure, spherical, and amorphous. The spectroscopic data indicated a substantial interaction between HAp and pectin, specifically between Ca (II) and pectin hydroxyl and carboxyl groups. The presence of pectin showed a noticeable influence on the prepared nanocomposite texture and porosity. We further assess the antibacterial and antifungal activity of the developed nanocomposite against a number of pathogenic bacteria and fungi, evaluated by the well diffusion method. In the absence of pectin, the XRD analysis revealed that the HAp nanoparticles had 10.93% crystallinity. When the pectin concentration reached 10 wt.%, it was reduced to approximately 7.29%. All synthesized nanocomposites demonstrated strong antimicrobial activity against both Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria in addition to various fungi (e.g., Aspergillus fumigatus, Penicillium funiculosum, and Trichoderma viride). This study endorses the HAp/Pectin nanocomposite as an efficient antimicrobial material for biomedical advanced applications.</description><subject>Antimicrobial agents</subject><subject>Aqueous solutions</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Carbon</subject><subject>Cellulose</subject><subject>Coliforms</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>E coli</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>Fruits</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Gram-positive bacteria</subject><subject>Hydroxyapatite</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Microorganisms</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nitrates</subject><subject>Pectin</subject><subject>Pharmaceutical industry</subject><subject>Pseudomonas aeruginosa</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Synthesis</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1r3DAQQE1poCHJsXdBL7m40Zcl-xIo226zsNvkkJzFWJZ2FWzJlexQ0z9fLQkhqS6jGT0eM5qi-EzwV8YafDWGfhkIp5hzLj4UpxRLVnIm8Mc390_FRUqPOB9eCUHkafH3u0lu71Gw6Bf4cFi6GP4sMMLkJnN1Z_TkPFqFYQwpF5CNYUC34-wnB2jt9JzKje-cBrTqoQudSciGiKaDQTvwsDeD8dNRvnM6htZBjzbeHq3Bp_PixEKfzMVLPCse1j_uVzfl9vbnZvVtW2rW0Kk0LdZcWElq1rQSaGekzgnoNg9BmNQ1YbgSllLJeCMs0xXjtoUWaqgaI9lZcf3sHed2MJ3OLUXo1RjdAHFRAZx6_-LdQe3Dk2oEoYyTLLh8EcTwezZpUoNL2vQ9eBPmpKikTUXquhYZ_fIf-hjm6PN4R6quaEU5z1T5TOVPSSka-9oMweq4TvVunewf-syV6A</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Saidi, N.</creator><creator>Azzaoui, K.</creator><creator>Ramdani, M.</creator><creator>Mejdoubi, E.</creator><creator>Jaradat, N.</creator><creator>Jodeh, S.</creator><creator>Hammouti, B.</creator><creator>Sabbahi, R.</creator><creator>Lamhamdi, A.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0003-2291-6821</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0002-1841-4944</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid></search><sort><creationdate>20221020</creationdate><title>Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections</title><author>Saidi, N. ; Azzaoui, K. ; Ramdani, M. ; Mejdoubi, E. ; Jaradat, N. ; Jodeh, S. ; Hammouti, B. ; Sabbahi, R. ; Lamhamdi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-eb0c46f71839b7a2de7c718acb456137c813056f2273496f3c534fbaba8a59e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antimicrobial agents</topic><topic>Aqueous solutions</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Carbon</topic><topic>Cellulose</topic><topic>Coliforms</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>E coli</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>Fruits</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Gram-positive bacteria</topic><topic>Hydroxyapatite</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Microorganisms</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nitrates</topic><topic>Pectin</topic><topic>Pharmaceutical industry</topic><topic>Pseudomonas aeruginosa</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saidi, N.</creatorcontrib><creatorcontrib>Azzaoui, K.</creatorcontrib><creatorcontrib>Ramdani, M.</creatorcontrib><creatorcontrib>Mejdoubi, E.</creatorcontrib><creatorcontrib>Jaradat, N.</creatorcontrib><creatorcontrib>Jodeh, S.</creatorcontrib><creatorcontrib>Hammouti, B.</creatorcontrib><creatorcontrib>Sabbahi, R.</creatorcontrib><creatorcontrib>Lamhamdi, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saidi, N.</au><au>Azzaoui, K.</au><au>Ramdani, M.</au><au>Mejdoubi, E.</au><au>Jaradat, N.</au><au>Jodeh, S.</au><au>Hammouti, B.</au><au>Sabbahi, R.</au><au>Lamhamdi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections</atitle><jtitle>Polymers</jtitle><date>2022-10-20</date><risdate>2022</risdate><volume>14</volume><issue>20</issue><spage>4446</spage><pages>4446-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Hydroxyapatite (HAp) attracts interest as a biomaterial for use in bone substitution or allografts. In the current work, biomaterial nanocomposites based on HAp and pectin were synthesized by using the double decomposition method, which involved using pectin extracted from fresh cladodes of the prickly pear, Opuntia ficus-indica. The crystallinity, purity, and several analytical techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy were used to understand the surface’s shape. The results revealed that the produced HAp/pectin nanoparticles are pure, spherical, and amorphous. The spectroscopic data indicated a substantial interaction between HAp and pectin, specifically between Ca (II) and pectin hydroxyl and carboxyl groups. The presence of pectin showed a noticeable influence on the prepared nanocomposite texture and porosity. We further assess the antibacterial and antifungal activity of the developed nanocomposite against a number of pathogenic bacteria and fungi, evaluated by the well diffusion method. In the absence of pectin, the XRD analysis revealed that the HAp nanoparticles had 10.93% crystallinity. When the pectin concentration reached 10 wt.%, it was reduced to approximately 7.29%. All synthesized nanocomposites demonstrated strong antimicrobial activity against both Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria in addition to various fungi (e.g., Aspergillus fumigatus, Penicillium funiculosum, and Trichoderma viride). This study endorses the HAp/Pectin nanocomposite as an efficient antimicrobial material for biomedical advanced applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/polym14204446</doi><orcidid>https://orcid.org/0000-0002-8745-8799</orcidid><orcidid>https://orcid.org/0000-0003-2291-6821</orcidid><orcidid>https://orcid.org/0000-0003-3673-7904</orcidid><orcidid>https://orcid.org/0000-0002-1841-4944</orcidid><orcidid>https://orcid.org/0000-0003-0202-0112</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-10, Vol.14 (20), p.4446 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9612341 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Antimicrobial agents Aqueous solutions Biomedical materials Bones Carbon Cellulose Coliforms Crystal structure Crystallinity E coli Ethanol Fourier transforms Fruits Fungi Fungicides Gram-positive bacteria Hydroxyapatite Infrared analysis Infrared spectroscopy Microorganisms Nanocomposites Nanoparticles Nitrates Pectin Pharmaceutical industry Pseudomonas aeruginosa Radiation Scanning electron microscopy Synthesis |
title | Design of Nanohydroxyapatite/Pectin Composite from Opuntia Ficus-Indica Cladodes for the Management of Microbial Infections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Nanohydroxyapatite/Pectin%20Composite%20from%20Opuntia%20Ficus-Indica%20Cladodes%20for%20the%20Management%20of%20Microbial%20Infections&rft.jtitle=Polymers&rft.au=Saidi,%20N.&rft.date=2022-10-20&rft.volume=14&rft.issue=20&rft.spage=4446&rft.pages=4446-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14204446&rft_dat=%3Cproquest_pubme%3E2729518886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728525244&rft_id=info:pmid/&rfr_iscdi=true |