Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte

Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-10, Vol.15 (20), p.7374
Hauptverfasser: Schwartz, Avital, Kossenko, Alexey, Zinigrad, Michael, Gofer, Yosef, Borodianskiy, Konstantin, Sobolev, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 7374
container_title Materials
container_volume 15
creator Schwartz, Avital
Kossenko, Alexey
Zinigrad, Michael
Gofer, Yosef
Borodianskiy, Konstantin
Sobolev, Alexander
description Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.
doi_str_mv 10.3390/ma15207374
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740842</galeid><sourcerecordid>A745740842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</originalsourceid><addsrcrecordid>eNpdkd9rFDEQxxdRsNS--BcEfBFha35tcnkRzqNaoVjB-hxms7NnSjY5k73S_e-b44q2Th5myHy-32SYpnnL6LkQhn6cgHWcaqHli-aEGaNaZqR8-aR-3ZyVcktrCMFW3Jw0eLkMOd0vsIPZz0g2qea4JSmSG9-qdWj1956sQ0gL6RfyI0CZgFwEdHNOYZm9I9f3fqiiqvCR_IQwt5-h4PAEwjfNqxFCwbPHfNr8-nJxs7lsr66_ftusr1onOj63nVJC635wkgL0iNIowQCckyCMGlcONHOqHxmnndAjxdpQTDvlBujGQYrT5tPRd7fvJxwcxjlDsLvsJ8iLTeDt8070v-023VmjGOPSVIP3jwY5_dljme3ki8MQIGLaF8s1Nx1nUrCKvvsPvU37HOt4B2oljen0gTo_UlsIaH0cU33X1TPg5F2KOPp6v9ay05KuJK-CD0eBy6mUjOPf3zNqD2u2_9YsHgCNkZrn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728499571</pqid></control><display><type>article</type><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</creator><creatorcontrib>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</creatorcontrib><description>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15207374</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Biocompatibility ; Biological activity ; Bones ; Chemical composition ; Chemical properties ; Coating ; Contact angle ; Corrosion ; Corrosion prevention ; Cytotoxicity ; Electrochemical impedance spectroscopy ; Electrolysis ; Electrolytes ; Hydrothermal treatment ; Hydroxyapatite ; Mechanical properties ; Methods ; Molten salts ; Morphology ; Nanoparticles ; Orthopaedic implants ; Orthopedics ; Oxidation ; Phase composition ; Phase transitions ; Radiation ; Scanning electron microscopy ; Spectrum analysis ; Surgical implants ; Titanium ; Titanium alloys ; Titanium base alloys ; Titanium oxides ; Transplants &amp; implants</subject><ispartof>Materials, 2022-10, Vol.15 (20), p.7374</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</citedby><cites>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</cites><orcidid>0000-0003-0214-3059 ; 0000-0002-7489-6298 ; 0000-0001-5824-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Schwartz, Avital</creatorcontrib><creatorcontrib>Kossenko, Alexey</creatorcontrib><creatorcontrib>Zinigrad, Michael</creatorcontrib><creatorcontrib>Gofer, Yosef</creatorcontrib><creatorcontrib>Borodianskiy, Konstantin</creatorcontrib><creatorcontrib>Sobolev, Alexander</creatorcontrib><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><title>Materials</title><description>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</description><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Bones</subject><subject>Chemical composition</subject><subject>Chemical properties</subject><subject>Coating</subject><subject>Contact angle</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Cytotoxicity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Hydrothermal treatment</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Molten salts</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Oxidation</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium oxides</subject><subject>Transplants &amp; implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9rFDEQxxdRsNS--BcEfBFha35tcnkRzqNaoVjB-hxms7NnSjY5k73S_e-b44q2Th5myHy-32SYpnnL6LkQhn6cgHWcaqHli-aEGaNaZqR8-aR-3ZyVcktrCMFW3Jw0eLkMOd0vsIPZz0g2qea4JSmSG9-qdWj1956sQ0gL6RfyI0CZgFwEdHNOYZm9I9f3fqiiqvCR_IQwt5-h4PAEwjfNqxFCwbPHfNr8-nJxs7lsr66_ftusr1onOj63nVJC635wkgL0iNIowQCckyCMGlcONHOqHxmnndAjxdpQTDvlBujGQYrT5tPRd7fvJxwcxjlDsLvsJ8iLTeDt8070v-023VmjGOPSVIP3jwY5_dljme3ki8MQIGLaF8s1Nx1nUrCKvvsPvU37HOt4B2oljen0gTo_UlsIaH0cU33X1TPg5F2KOPp6v9ay05KuJK-CD0eBy6mUjOPf3zNqD2u2_9YsHgCNkZrn</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Schwartz, Avital</creator><creator>Kossenko, Alexey</creator><creator>Zinigrad, Michael</creator><creator>Gofer, Yosef</creator><creator>Borodianskiy, Konstantin</creator><creator>Sobolev, Alexander</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0214-3059</orcidid><orcidid>https://orcid.org/0000-0002-7489-6298</orcidid><orcidid>https://orcid.org/0000-0001-5824-1462</orcidid></search><sort><creationdate>20221021</creationdate><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><author>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Bones</topic><topic>Chemical composition</topic><topic>Chemical properties</topic><topic>Coating</topic><topic>Contact angle</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Cytotoxicity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Hydrothermal treatment</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Molten salts</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Oxidation</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium oxides</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, Avital</creatorcontrib><creatorcontrib>Kossenko, Alexey</creatorcontrib><creatorcontrib>Zinigrad, Michael</creatorcontrib><creatorcontrib>Gofer, Yosef</creatorcontrib><creatorcontrib>Borodianskiy, Konstantin</creatorcontrib><creatorcontrib>Sobolev, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, Avital</au><au>Kossenko, Alexey</au><au>Zinigrad, Michael</au><au>Gofer, Yosef</au><au>Borodianskiy, Konstantin</au><au>Sobolev, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</atitle><jtitle>Materials</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>15</volume><issue>20</issue><spage>7374</spage><pages>7374-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15207374</doi><orcidid>https://orcid.org/0000-0003-0214-3059</orcidid><orcidid>https://orcid.org/0000-0002-7489-6298</orcidid><orcidid>https://orcid.org/0000-0001-5824-1462</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-10, Vol.15 (20), p.7374
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611249
source MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Alloys
Biocompatibility
Biological activity
Bones
Chemical composition
Chemical properties
Coating
Contact angle
Corrosion
Corrosion prevention
Cytotoxicity
Electrochemical impedance spectroscopy
Electrolysis
Electrolytes
Hydrothermal treatment
Hydroxyapatite
Mechanical properties
Methods
Molten salts
Morphology
Nanoparticles
Orthopaedic implants
Orthopedics
Oxidation
Phase composition
Phase transitions
Radiation
Scanning electron microscopy
Spectrum analysis
Surgical implants
Titanium
Titanium alloys
Titanium base alloys
Titanium oxides
Transplants & implants
title Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatite%20Coating%20on%20Ti-6Al-7Nb%20Alloy%20by%20Plasma%20Electrolytic%20Oxidation%20in%20Salt-Based%20Electrolyte&rft.jtitle=Materials&rft.au=Schwartz,%20Avital&rft.date=2022-10-21&rft.volume=15&rft.issue=20&rft.spage=7374&rft.pages=7374-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15207374&rft_dat=%3Cgale_pubme%3EA745740842%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728499571&rft_id=info:pmid/&rft_galeid=A745740842&rfr_iscdi=true