Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte
Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treatin...
Gespeichert in:
Veröffentlicht in: | Materials 2022-10, Vol.15 (20), p.7374 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 7374 |
container_title | Materials |
container_volume | 15 |
creator | Schwartz, Avital Kossenko, Alexey Zinigrad, Michael Gofer, Yosef Borodianskiy, Konstantin Sobolev, Alexander |
description | Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts. |
doi_str_mv | 10.3390/ma15207374 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740842</galeid><sourcerecordid>A745740842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</originalsourceid><addsrcrecordid>eNpdkd9rFDEQxxdRsNS--BcEfBFha35tcnkRzqNaoVjB-hxms7NnSjY5k73S_e-b44q2Th5myHy-32SYpnnL6LkQhn6cgHWcaqHli-aEGaNaZqR8-aR-3ZyVcktrCMFW3Jw0eLkMOd0vsIPZz0g2qea4JSmSG9-qdWj1956sQ0gL6RfyI0CZgFwEdHNOYZm9I9f3fqiiqvCR_IQwt5-h4PAEwjfNqxFCwbPHfNr8-nJxs7lsr66_ftusr1onOj63nVJC635wkgL0iNIowQCckyCMGlcONHOqHxmnndAjxdpQTDvlBujGQYrT5tPRd7fvJxwcxjlDsLvsJ8iLTeDt8070v-023VmjGOPSVIP3jwY5_dljme3ki8MQIGLaF8s1Nx1nUrCKvvsPvU37HOt4B2oljen0gTo_UlsIaH0cU33X1TPg5F2KOPp6v9ay05KuJK-CD0eBy6mUjOPf3zNqD2u2_9YsHgCNkZrn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728499571</pqid></control><display><type>article</type><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</creator><creatorcontrib>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</creatorcontrib><description>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15207374</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Biocompatibility ; Biological activity ; Bones ; Chemical composition ; Chemical properties ; Coating ; Contact angle ; Corrosion ; Corrosion prevention ; Cytotoxicity ; Electrochemical impedance spectroscopy ; Electrolysis ; Electrolytes ; Hydrothermal treatment ; Hydroxyapatite ; Mechanical properties ; Methods ; Molten salts ; Morphology ; Nanoparticles ; Orthopaedic implants ; Orthopedics ; Oxidation ; Phase composition ; Phase transitions ; Radiation ; Scanning electron microscopy ; Spectrum analysis ; Surgical implants ; Titanium ; Titanium alloys ; Titanium base alloys ; Titanium oxides ; Transplants & implants</subject><ispartof>Materials, 2022-10, Vol.15 (20), p.7374</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</citedby><cites>FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</cites><orcidid>0000-0003-0214-3059 ; 0000-0002-7489-6298 ; 0000-0001-5824-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611249/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611249/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Schwartz, Avital</creatorcontrib><creatorcontrib>Kossenko, Alexey</creatorcontrib><creatorcontrib>Zinigrad, Michael</creatorcontrib><creatorcontrib>Gofer, Yosef</creatorcontrib><creatorcontrib>Borodianskiy, Konstantin</creatorcontrib><creatorcontrib>Sobolev, Alexander</creatorcontrib><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><title>Materials</title><description>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</description><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Bones</subject><subject>Chemical composition</subject><subject>Chemical properties</subject><subject>Coating</subject><subject>Contact angle</subject><subject>Corrosion</subject><subject>Corrosion prevention</subject><subject>Cytotoxicity</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Hydrothermal treatment</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Molten salts</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Oxidation</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Radiation</subject><subject>Scanning electron microscopy</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Titanium oxides</subject><subject>Transplants & implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9rFDEQxxdRsNS--BcEfBFha35tcnkRzqNaoVjB-hxms7NnSjY5k73S_e-b44q2Th5myHy-32SYpnnL6LkQhn6cgHWcaqHli-aEGaNaZqR8-aR-3ZyVcktrCMFW3Jw0eLkMOd0vsIPZz0g2qea4JSmSG9-qdWj1956sQ0gL6RfyI0CZgFwEdHNOYZm9I9f3fqiiqvCR_IQwt5-h4PAEwjfNqxFCwbPHfNr8-nJxs7lsr66_ftusr1onOj63nVJC635wkgL0iNIowQCckyCMGlcONHOqHxmnndAjxdpQTDvlBujGQYrT5tPRd7fvJxwcxjlDsLvsJ8iLTeDt8070v-023VmjGOPSVIP3jwY5_dljme3ki8MQIGLaF8s1Nx1nUrCKvvsPvU37HOt4B2oljen0gTo_UlsIaH0cU33X1TPg5F2KOPp6v9ay05KuJK-CD0eBy6mUjOPf3zNqD2u2_9YsHgCNkZrn</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Schwartz, Avital</creator><creator>Kossenko, Alexey</creator><creator>Zinigrad, Michael</creator><creator>Gofer, Yosef</creator><creator>Borodianskiy, Konstantin</creator><creator>Sobolev, Alexander</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0214-3059</orcidid><orcidid>https://orcid.org/0000-0002-7489-6298</orcidid><orcidid>https://orcid.org/0000-0001-5824-1462</orcidid></search><sort><creationdate>20221021</creationdate><title>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</title><author>Schwartz, Avital ; Kossenko, Alexey ; Zinigrad, Michael ; Gofer, Yosef ; Borodianskiy, Konstantin ; Sobolev, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-566377bdc40aabee49631aacc4a396f8ca71c6bf120537f0ec4a617c6cda5fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Bones</topic><topic>Chemical composition</topic><topic>Chemical properties</topic><topic>Coating</topic><topic>Contact angle</topic><topic>Corrosion</topic><topic>Corrosion prevention</topic><topic>Cytotoxicity</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Hydrothermal treatment</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Molten salts</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Oxidation</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Radiation</topic><topic>Scanning electron microscopy</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Titanium oxides</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwartz, Avital</creatorcontrib><creatorcontrib>Kossenko, Alexey</creatorcontrib><creatorcontrib>Zinigrad, Michael</creatorcontrib><creatorcontrib>Gofer, Yosef</creatorcontrib><creatorcontrib>Borodianskiy, Konstantin</creatorcontrib><creatorcontrib>Sobolev, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwartz, Avital</au><au>Kossenko, Alexey</au><au>Zinigrad, Michael</au><au>Gofer, Yosef</au><au>Borodianskiy, Konstantin</au><au>Sobolev, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte</atitle><jtitle>Materials</jtitle><date>2022-10-21</date><risdate>2022</risdate><volume>15</volume><issue>20</issue><spage>7374</spage><pages>7374-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Titanium alloys have good biocompatibility and good mechanical properties, making them particularly suitable for dental and orthopedic implants. Improving their osseointegration with human bones is one of the most essential tasks. This can be achieved by developing hydroxyapatite (HA) on the treating surface using the plasma electrolytic oxidation (PEO) method in molten salt. In this study, a coating of titanium oxide-containing HA nanoparticles was formed on Ti-6Al-7Nb alloy by PEO in molten salt. Then, samples were subjected to hydrothermal treatment (HTT) to form HA crystals sized 0.5 to 1 μm. The effect of the current and voltage frequency for the creation of the coating on the morphology, chemical, and phase composition was studied. The anti-corrosion properties of the samples were studied using the potentiodynamic polarization test (PPT) and electrochemical impedance spectroscopy (EIS). An assessment of the morphology of the sample formed at a frequency of 100 Hz shows that the structure of this coating has a uniform submicron porosity, and its surface shows high hydrophilicity and anti-corrosion properties (4.90 × 106 Ohm·cm2). In this work, for the first time, the process of formation of a bioactive coating consisting of titanium oxides and HA was studied by the PEO method in molten salts.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15207374</doi><orcidid>https://orcid.org/0000-0003-0214-3059</orcidid><orcidid>https://orcid.org/0000-0002-7489-6298</orcidid><orcidid>https://orcid.org/0000-0001-5824-1462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-10, Vol.15 (20), p.7374 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9611249 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Full-Text Journals in Chemistry (Open access); PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Alloys Biocompatibility Biological activity Bones Chemical composition Chemical properties Coating Contact angle Corrosion Corrosion prevention Cytotoxicity Electrochemical impedance spectroscopy Electrolysis Electrolytes Hydrothermal treatment Hydroxyapatite Mechanical properties Methods Molten salts Morphology Nanoparticles Orthopaedic implants Orthopedics Oxidation Phase composition Phase transitions Radiation Scanning electron microscopy Spectrum analysis Surgical implants Titanium Titanium alloys Titanium base alloys Titanium oxides Transplants & implants |
title | Hydroxyapatite Coating on Ti-6Al-7Nb Alloy by Plasma Electrolytic Oxidation in Salt-Based Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxyapatite%20Coating%20on%20Ti-6Al-7Nb%20Alloy%20by%20Plasma%20Electrolytic%20Oxidation%20in%20Salt-Based%20Electrolyte&rft.jtitle=Materials&rft.au=Schwartz,%20Avital&rft.date=2022-10-21&rft.volume=15&rft.issue=20&rft.spage=7374&rft.pages=7374-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15207374&rft_dat=%3Cgale_pubme%3EA745740842%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728499571&rft_id=info:pmid/&rft_galeid=A745740842&rfr_iscdi=true |