Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides
The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthen...
Gespeichert in:
Veröffentlicht in: | Materials 2022-10, Vol.15 (20), p.7189 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 7189 |
container_title | Materials |
container_volume | 15 |
creator | Vodičková, Věra Švec, Martin Hanus, Pavel Bukovská, Šárka Pazourková Prokopčáková, Petra |
description | The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition. |
doi_str_mv | 10.3390/ma15207189 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740585</galeid><sourcerecordid>A745740585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4933830dbfa927f2b87a67b0405f5948dbb2d6dbcf884d37a2723395e2e6b5ca3</originalsourceid><addsrcrecordid>eNpdUV1rHCEUHUoDDWle8guEvpTCpH6Mo_ahsA1NG0gJJNtnUee6MczoVmcK-9b_0H_YX1KXDf3IFa5XPedcD7dpzgg-Z0zht5MhnGJBpHrWHBOl-paornv-T_2iOS3lAddgjEiqjpv1Jfz68XM11nQX2vVuC-gqp4hW4zKFGAYo79BNRPM9oLs5Q9zUKoa4QXaHbsFn4-aUd-gLzGYs6EPKe8rL5sjXI5w-7ifN18uP64vP7fXNp6uL1XXrOkrntlOMSYYH642iwlMrhemFxR3mnqtODtbSoR-s81J2AxOGClqNcqDQW-4MO2neH3S3i51gcBDnbEa9zWEyeaeTCfr_lxju9SZ916onWGJSBV4_CuT0bYEy6ykUB-NoIqSl6NpQcdILrCr01RPoQ1pyrPb2KMmrGt2jzg-ojRlBh-hT7evqGmAKLkXwod6vRMdFdSl5Jbw5EFxOpWTwf35PsN5PVf-dKvsNQiKVsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728501329</pqid></control><display><type>article</type><title>Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides</title><source>Open Access: PubMed Central</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Vodičková, Věra ; Švec, Martin ; Hanus, Pavel ; Bukovská, Šárka ; Pazourková Prokopčáková, Petra</creator><creatorcontrib>Vodičková, Věra ; Švec, Martin ; Hanus, Pavel ; Bukovská, Šárka ; Pazourková Prokopčáková, Petra</creatorcontrib><description>The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15207189</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloying ; Alloys ; Aluminum ; Annealing ; Atoms & subatomic particles ; Borides ; Boron ; Crack propagation ; Ductility ; Equilibrium ; Ferrous alloys ; Grain boundaries ; Grain size ; Heat ; High temperature ; Intermetallic compounds ; Investigations ; Iron aluminides ; Mechanical properties ; Molybdenum ; Molybdenum alloys ; Refractory metals ; Silicides ; Silicon ; Solid solutions ; Solution strengthening ; Temperature ; Titanium ; Workability ; Yield strength ; Yield stress</subject><ispartof>Materials, 2022-10, Vol.15 (20), p.7189</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4933830dbfa927f2b87a67b0405f5948dbb2d6dbcf884d37a2723395e2e6b5ca3</citedby><cites>FETCH-LOGICAL-c422t-4933830dbfa927f2b87a67b0405f5948dbb2d6dbcf884d37a2723395e2e6b5ca3</cites><orcidid>0000-0001-7100-9932 ; 0000-0002-9434-6349 ; 0000-0003-1533-1016 ; 0000-0002-2588-766X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610801/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9610801/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Bukovská, Šárka</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><title>Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides</title><title>Materials</title><description>The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition.</description><subject>Alloying</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Annealing</subject><subject>Atoms & subatomic particles</subject><subject>Borides</subject><subject>Boron</subject><subject>Crack propagation</subject><subject>Ductility</subject><subject>Equilibrium</subject><subject>Ferrous alloys</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Heat</subject><subject>High temperature</subject><subject>Intermetallic compounds</subject><subject>Investigations</subject><subject>Iron aluminides</subject><subject>Mechanical properties</subject><subject>Molybdenum</subject><subject>Molybdenum alloys</subject><subject>Refractory metals</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Temperature</subject><subject>Titanium</subject><subject>Workability</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUV1rHCEUHUoDDWle8guEvpTCpH6Mo_ahsA1NG0gJJNtnUee6MczoVmcK-9b_0H_YX1KXDf3IFa5XPedcD7dpzgg-Z0zht5MhnGJBpHrWHBOl-paornv-T_2iOS3lAddgjEiqjpv1Jfz68XM11nQX2vVuC-gqp4hW4zKFGAYo79BNRPM9oLs5Q9zUKoa4QXaHbsFn4-aUd-gLzGYs6EPKe8rL5sjXI5w-7ifN18uP64vP7fXNp6uL1XXrOkrntlOMSYYH642iwlMrhemFxR3mnqtODtbSoR-s81J2AxOGClqNcqDQW-4MO2neH3S3i51gcBDnbEa9zWEyeaeTCfr_lxju9SZ916onWGJSBV4_CuT0bYEy6ykUB-NoIqSl6NpQcdILrCr01RPoQ1pyrPb2KMmrGt2jzg-ojRlBh-hT7evqGmAKLkXwod6vRMdFdSl5Jbw5EFxOpWTwf35PsN5PVf-dKvsNQiKVsw</recordid><startdate>20221015</startdate><enddate>20221015</enddate><creator>Vodičková, Věra</creator><creator>Švec, Martin</creator><creator>Hanus, Pavel</creator><creator>Bukovská, Šárka</creator><creator>Pazourková Prokopčáková, Petra</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7100-9932</orcidid><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0002-2588-766X</orcidid></search><sort><creationdate>20221015</creationdate><title>Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides</title><author>Vodičková, Věra ; Švec, Martin ; Hanus, Pavel ; Bukovská, Šárka ; Pazourková Prokopčáková, Petra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4933830dbfa927f2b87a67b0405f5948dbb2d6dbcf884d37a2723395e2e6b5ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Annealing</topic><topic>Atoms & subatomic particles</topic><topic>Borides</topic><topic>Boron</topic><topic>Crack propagation</topic><topic>Ductility</topic><topic>Equilibrium</topic><topic>Ferrous alloys</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Heat</topic><topic>High temperature</topic><topic>Intermetallic compounds</topic><topic>Investigations</topic><topic>Iron aluminides</topic><topic>Mechanical properties</topic><topic>Molybdenum</topic><topic>Molybdenum alloys</topic><topic>Refractory metals</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Temperature</topic><topic>Titanium</topic><topic>Workability</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodičková, Věra</creatorcontrib><creatorcontrib>Švec, Martin</creatorcontrib><creatorcontrib>Hanus, Pavel</creatorcontrib><creatorcontrib>Bukovská, Šárka</creatorcontrib><creatorcontrib>Pazourková Prokopčáková, Petra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodičková, Věra</au><au>Švec, Martin</au><au>Hanus, Pavel</au><au>Bukovská, Šárka</au><au>Pazourková Prokopčáková, Petra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides</atitle><jtitle>Materials</jtitle><date>2022-10-15</date><risdate>2022</risdate><volume>15</volume><issue>20</issue><spage>7189</spage><pages>7189-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The effect of boron addition into Fe–28Al–5Si–X (X = -, 2Mo, or 2Ti) on the structure and high-temperature yield stress was investigated. Generally, the alloying of binary Fe3Al-type iron aluminides by silicon significantly improves high-temperature mechanical properties by solid-solution strengthening. On the other hand, the workability and ductile properties at room or slightly elevated temperatures get worse with the increasing silicon content. Boron alloying together with titanium or molybdenum alloying is one of the ways to improve the workability of this type of alloy and, at the same time, ensure the formation of a sufficient amount of secondary phase particles required for effective strengthening. In this paper, the influence of 1 at. % of boron on high-temperature yield stress is evaluated in response to structural changes and compared with results obtained previously on the same type of alloy (Fe–28Al–5Si–2X, X= -, Mo, or Ti) but without boron alloying. It can be concluded that the network structure of borides of refractory metals formed due to boron alloying works more effectively for alloy hardening at higher temperatures than a mixture of silicides and carbides present in the boron-free alloy of the same composition.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma15207189</doi><orcidid>https://orcid.org/0000-0001-7100-9932</orcidid><orcidid>https://orcid.org/0000-0002-9434-6349</orcidid><orcidid>https://orcid.org/0000-0003-1533-1016</orcidid><orcidid>https://orcid.org/0000-0002-2588-766X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-10, Vol.15 (20), p.7189 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9610801 |
source | Open Access: PubMed Central; MDPI - Multidisciplinary Digital Publishing Institute; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Alloying Alloys Aluminum Annealing Atoms & subatomic particles Borides Boron Crack propagation Ductility Equilibrium Ferrous alloys Grain boundaries Grain size Heat High temperature Intermetallic compounds Investigations Iron aluminides Mechanical properties Molybdenum Molybdenum alloys Refractory metals Silicides Silicon Solid solutions Solution strengthening Temperature Titanium Workability Yield strength Yield stress |
title | Fe–Al–Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%E2%80%93Al%E2%80%93Si-Type%20Iron%20Aluminides:%20On%20the%20Strengthening%20by%20Refractory%20Metals%20Borides&rft.jtitle=Materials&rft.au=Vodi%C4%8Dkov%C3%A1,%20V%C4%9Bra&rft.date=2022-10-15&rft.volume=15&rft.issue=20&rft.spage=7189&rft.pages=7189-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15207189&rft_dat=%3Cgale_pubme%3EA745740585%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728501329&rft_id=info:pmid/&rft_galeid=A745740585&rfr_iscdi=true |